Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy

Charge transfer dynamics on the surface of single-wall carbon nanotube sheets is investigated using in situ Raman spectroscopy in order to understand the actuation mechanism of an electrochemical actuator and to determine associated parameters. We built an actuator from single-wall carbon nanotube mat and studied its actuation in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide and sulfate solutions in order to clarify the role of counterion as mobile ions in the film. The variation of bonding with applied potential was monitored using in situ Raman spectroscopy. This is because Raman can detect changes in C–C bond length: the radial breathing mode at ∼190 cm−1 varies inversely with the nanotube diameter, and the G band at ∼1590 cm−1 varies with the axial bond length. In addition, the intensities of both the modes vary with the emptying/depleting or filling of the bonding and antibonding states due to electrochemical charge injection. We discussed the variation of peak height and wave n...

[1]  S. Nemat-Nasser,et al.  Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms , 2003 .

[2]  M. Dresselhaus,et al.  Potential dependent surface Raman spectroscopy of single wall carbon nanotube films on platinum electrodes , 2003 .

[3]  R. Young,et al.  Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: a simple geometric effect , 2003 .

[4]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[5]  S. Reich,et al.  Elastic properties of carbon nanotubes under hydrostatic pressure , 2002 .

[6]  Bennett B. Goldberg,et al.  G-band resonant Raman study of 62 isolated single-wall carbon nanotubes , 2002 .

[7]  H. Kataura,et al.  Determination of SWCNT diameters from the Raman response of the radial breathing mode , 2001 .

[8]  F. Banhart The Formation of a Connection between Carbon Nanotubes in an Electron Beam , 2001 .

[9]  P. Eklund,et al.  In situ Raman scattering studies of alkali-doped single wall carbon nanotubes , 2001 .

[10]  Stewart Sherrit,et al.  Characterization of the electromechanical properties of EAP materials , 2000, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  R. Baughman,et al.  Raman scattering study of electrochemically doped single wall nanotubes , 2001 .

[12]  L. Kavan,et al.  In situ Raman and Vis-NIR spectroelectrochemistry at single-walled carbon nanotubes , 2000 .

[13]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[14]  Natarajan Rajalakshmi,et al.  Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage , 2000 .

[15]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[16]  Andrew G. Rinzler,et al.  Solid‐State Electrochemistry of the Li Single Wall Carbon Nanotube System , 2000 .

[17]  Thomas Frauenheim,et al.  Hydrogen adsorption and storage in carbon nanotubes , 2000 .

[18]  S. Reich,et al.  SHEAR STRAIN IN CARBON NANOTUBES UNDER HYDROSTATIC PRESSURE , 2000 .

[19]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[20]  A. D. Prins,et al.  Mechanical Response of Carbon Nanotubes under Molecular and Macroscopic Pressures , 1999 .

[21]  J. Heath,et al.  Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes and Their Possible Application in Supercapacitors , 1999 .

[22]  Patrick Bernier,et al.  Tuning and monitoring the electronic structure of carbon nanotubes , 1999 .

[23]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[24]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[25]  Sumio Iijima,et al.  Elastic Response of Carbon Nanotube Bundles to Visible Light , 1999 .

[26]  M. Dresselhaus,et al.  Anode performance of a Li ion battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers , 1999 .

[27]  Andreas Züttel,et al.  Electrochemical Storage of Hydrogen in Nanotube Materials , 1999 .

[28]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[29]  Ilene J. Busch‐Vishniac,et al.  Electromechanical sensors and actuators , 1998 .

[30]  László Forró,et al.  Field emission from single-wall carbon nanotube films , 1998 .

[31]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[32]  Michael F. Ashby,et al.  The selection of mechanical actuators based on performance indices , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  A. Halliday,et al.  Core formation on Mars and differentiated asteroids , 1997, Nature.

[34]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[35]  A. M. Rao,et al.  Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering , 1997, Nature.

[36]  J. Tarascon,et al.  Unique effect of mechanical milling on the lithium intercalation properties of different carbons , 1997 .

[37]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[38]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[39]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[40]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[41]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[42]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[43]  R. Baughman Conducting polymer artificial muscles , 1996 .

[44]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[45]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[46]  Murthy,et al.  Charge oscillations and structure for alkali-metal-doped polyacetylene. , 1992, Physical review. B, Condensed matter.

[47]  M. Armand,et al.  Electrochemical intercalation of lithium into solid fullerene C60 , 1992 .

[48]  H. Zabel,et al.  Graphite intercalation compounds I : structure and dynamics , 1990 .

[49]  Neutron-diffraction studies of BaC6: c-axis compressibility, carbon-carbon bond length, and charge transfer. , 1987, Physical review. B, Condensed matter.

[50]  Eklund,et al.  Charge-transfer effects in graphite intercalates: Ab initio calculations and neutron-diffraction experiment. , 1987, Physical review letters.

[51]  H. Gerischer,et al.  Density of the electronic states of graphite: derivation from differential capacitance measurements , 1987 .

[52]  P. Eklund,et al.  CC bond distance and charge transfer in D2SO4 — Graphite compounds , 1985 .

[53]  O. Kafri,et al.  The electrical double layer charge and associated dimensional changes of high surface area electrodes as detected by more deflectometry , 1985 .

[54]  M. Dresselhaus,et al.  Light scattering in graphite intercalation compounds , 1982 .

[55]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .