A Parameterization of Local and Remote Tidal Mixing

Vertical mixing is often regarded as the Achilles' heel of ocean models. In particular, few models include a comprehensive and energy‐constrained parameterization of mixing by internal ocean tides. Here, we present an energy‐conserving mixing scheme which accounts for the local breaking of high‐mode internal tides and the distant dissipation of low‐mode internal tides. The scheme relies on four static two‐dimensional maps of internal tide dissipation, constructed using mode‐by‐mode Lagrangian tracking of energy beams from sources to sinks. Each map is associated with a distinct dissipative process and a corresponding vertical structure. Applied to an observational climatology of stratification, the scheme produces a global three‐dimensional map of dissipation which compares well with available microstructure observations and with upper‐ocean finestructure mixing estimates. This relative agreement, both in magnitude and spatial structure across ocean basins, suggests that internal tides underpin most of observed dissipation in the ocean interior at the global scale. The proposed parameterization is therefore expected to improve understanding, mapping, and modeling of ocean mixing.

[1]  Gunjan Tiyyagura,et al.  Development and Evaluation , 2021 .

[2]  D. Olbers,et al.  On PSI Interactions in Internal Gravity Wave Fields and the Decay of Baroclinic Tides , 2020, Journal of Physical Oceanography.

[3]  R. Ferrari,et al.  Transformation and Upwelling of Bottom Water in Fracture Zone Valleys , 2020, Journal of Physical Oceanography.

[4]  R. Lien,et al.  Energy Sinks for Lee Waves in Shear Flow , 2019, Journal of Physical Oceanography.

[5]  Richard G. Williams,et al.  Internal Tides Drive Nutrient Fluxes Into the Deep Chlorophyll Maximum Over Mid‐ocean Ridges , 2019, Global Biogeochemical Cycles.

[6]  H. Douville,et al.  Evaluation of CMIP6 DECK Experiments With CNRM‐CM6‐1 , 2019, Journal of Advances in Modeling Earth Systems.

[7]  Zhong‐Kuo Zhao,et al.  Deep-ocean mixing driven by small-scale internal tides , 2019, Nature Communications.

[8]  F. Roquet,et al.  Toward global maps of internal tide energy sinks , 2019, Ocean Modelling.

[9]  T. Hibiya,et al.  Assessment of Finescale Parameterizations of Deep Ocean Mixing in the Presence of Geostrophic Current Shear: Results of Microstructure Measurements in the Antarctic Circumpolar Current Region , 2018, Journal of Geophysical Research: Oceans.

[10]  Rong‐Hua Zhang,et al.  A Modified Vertical Mixing Parameterization for Its Improved Ocean and Coupled Simulations in the Tropical Pacific , 2019, Journal of Physical Oceanography.

[11]  M. Picheral,et al.  Longitudinal contrast in turbulence along a  ∼ 19° S section in the Pacific and its consequences for biogeochemical fluxes , 2018, Biogeosciences.

[12]  L. Talley,et al.  Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves , 2018, Nature Geoscience.

[13]  V. Thierry,et al.  First Direct Estimates of Volume and Water Mass Transports Across the Reykjanes Ridge , 2018, Journal of Geophysical Research: Oceans.

[14]  X. Shang,et al.  Assessment of fine-scale parameterizations at low latitudes of the North Pacific , 2018, Scientific Reports.

[15]  D. Dausse,et al.  Contrasted turbulence intensities in the Indonesian Throughflow: a challenge for parameterizing energy dissipation rate , 2018, Ocean Dynamics.

[16]  T. Hibiya,et al.  Decay Rates of Internal Tides Estimated by an Improved Wave–Wave Interaction Analysis , 2018, Journal of Physical Oceanography.

[17]  Zhong‐Kuo Zhao,et al.  The lifecycle of semidiurnal internal tides over the northern Mid-Atlantic Ridge , 2018 .

[18]  J. Riley,et al.  Mixing Efficiency in the Ocean. , 2017, Annual review of marine science.

[19]  B. Fernández-Castro Longitudinal contrast in Turbulence along a ∼ 19 S section in the Pacific and its consequences on biogeochemical fluxes , 2018 .

[20]  G. Danabasoglu,et al.  Climate Process Team on Internal Wave-Driven Ocean Mixing. , 2017, Bulletin of the American Meteorological Society.

[21]  F. Roquet,et al.  Abyssal ocean overturning shaped by seafloor distribution , 2017, Nature.

[22]  D. Olbers,et al.  Evaluating the Global Internal Wave Model IDEMIX Using Finestructure Methods , 2017 .

[23]  A. Thurnherr,et al.  Turbulent mixing in a deep fracture zone on the Mid-Atlantic Ridge , 2017 .

[24]  Eric Kunze,et al.  Internal-Wave-Driven Mixing: Global Geography and Budgets , 2017 .

[25]  M. Mcphaden,et al.  Focusing of internal tides by near‐inertial waves , 2017 .

[26]  F. Kokoszka,et al.  Variability of the Turbulent Kinetic Energy Dissipation along the A25 Greenland–Portugal Transect Repeated from 2002 to 2012 , 2016 .

[27]  R. Hallberg,et al.  Climatic Impacts of Parameterized Local and Remote Tidal Mixing , 2016 .

[28]  J. Brearley,et al.  Generation of Internal Waves by Eddies Impinging on the Western Boundary of the North Atlantic , 2016 .

[29]  T. Hibiya,et al.  The impacts of ocean bottom roughness and tidal flow amplitude on abyssal mixing , 2016 .

[30]  G. Madec,et al.  On the Consumption of Antarctic Bottom Water in the Abyssal Ocean , 2016 .

[31]  J. Chomaz,et al.  Impact of a Mean Current on the Internal Tide Energy Dissipation at the Critical Latitude , 2015 .

[32]  J. Toole,et al.  Vertical kinetic energy and turbulent dissipation in the ocean , 2015 .

[33]  A. Melet,et al.  A three‐dimensional map of tidal dissipation over abyssal hills , 2015 .

[34]  L. Talley,et al.  Estimating the Mean Diapycnal Mixing Using a Finescale Strain Parameterization , 2015 .

[35]  L. Thomas,et al.  The Modulation of Equatorial Turbulence by Tropical Instability Waves in a Regional Ocean Model , 2015 .

[36]  Aurelien Ponte,et al.  Incoherent signature of internal tides on sea level in idealized numerical simulations , 2015 .

[37]  R. Hallberg,et al.  Energy Flux into Internal Lee Waves: Sensitivity to Future Climate Changes Using Linear Theory and a Climate Model , 2015 .

[38]  J. Nycander,et al.  On the Generation of Bottom - Trapped Internal Tides , 2015 .

[39]  F. Roquet,et al.  Global Calculation of Tidal Energy Conversion into Vertical Normal Modes , 2014 .

[40]  D. Olbers,et al.  Toward Energetically Consistent Ocean Models , 2014 .

[41]  F. Kokoszka,et al.  Dissipation Rate Estimates from Microstructure and Finescale Internal Wave Observations along the A25 Greenland–Portugal OVIDE Line , 2014 .

[42]  F. Roquet,et al.  Comparison of calculated energy flux of internal tides with microstructure measurements , 2014 .

[43]  Robert Pinkel,et al.  Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate , 2014 .

[44]  Alexander Forryan,et al.  Suppression of Internal Wave Breaking in the Antarctic Circumpolar Current near Topography , 2014 .

[45]  D. Olbers,et al.  An energy compartment model for propagation, non-linear interaction and dissipation of internal gravity waves , 2014 .

[46]  S. Legg Scattering of Low-Mode Internal Waves at Finite Isolated Topography , 2014 .

[47]  Malte Müller On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion , 2013 .

[48]  C. Talandier,et al.  On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5 : a mean state comparison , 2013 .

[49]  J. Goff,et al.  Internal tide generation by abyssal hills using analytical theory , 2013 .

[50]  J. Nash,et al.  The geography of semidiurnal mode‐1 internal‐tide energy loss , 2013 .

[51]  Y. Niwa,et al.  Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom , 2013, Nature Communications.

[52]  Frank O. Bryan,et al.  The Impact of Oceanic Near-Inertial Waves on Climate , 2013 .

[53]  R. Hallberg,et al.  Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing , 2013 .

[54]  K. Polzin,et al.  Internal waves and turbulence in the Antarctic Circumpolar Current , 2013 .

[55]  Zhong‐Kuo Zhao,et al.  The Latitudinal Dependence of Shear and Mixing in the Pacific Transiting the Critical Latitude for PSI , 2013 .

[56]  T. Hibiya,et al.  Assessment of fine‐scale parameterizations of turbulent dissipation rates near mixing hotspots in the deep ocean , 2012 .

[57]  Alistair Adcroft,et al.  Routes to energy dissipation for geostrophic flows in the Southern Ocean , 2012, Nature Geoscience.

[58]  Andrew J. Watson,et al.  Turbulence and diapycnal mixing in Drake Passage , 2012 .

[59]  L. Talley,et al.  Spatial and temporal variability of global ocean mixing inferred from Argo profiles , 2012 .

[60]  K. Taylor,et al.  Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere‐ocean climate models , 2012 .

[61]  S. Bates,et al.  The CCSM4 Ocean Component , 2012 .

[62]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[63]  K. Winters,et al.  PSI of the Internal Tide on aβPlane: Flux Divergence and Near-Inertial Wave Propagation , 2011 .

[64]  Toshiyuki Hibiya,et al.  Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations , 2011 .

[65]  Miranda C. Holmes-Cerfon,et al.  Decay of an internal tide due to random topography in the ocean , 2011, Journal of Fluid Mechanics.

[66]  S. Legg,et al.  A Mechanism for Local Dissipation of Internal Tides Generated at Rough Topography , 2011 .

[67]  J. Toole,et al.  Diapycnal Mixing in the Antarctic Circumpolar Current , 2011 .

[68]  C. Jones,et al.  Interactive comment on “ Development and evaluation of an Earth-system model – HadGEM 2 ” , 2011 .

[69]  John A. Goff,et al.  Global prediction of abyssal hill root‐mean‐square heights from small‐scale altimetric gravity variability , 2010 .

[70]  G. Haug,et al.  The polar ocean and glacial cycles in atmospheric CO2 concentration , 2010, Nature.

[71]  J. Nash,et al.  Sea surface cooling at the Equator by subsurface mixing in tropical instability waves , 2009 .

[72]  C. Muller,et al.  Saturation of the Internal Tides and Induced Mixing in the Abyssal Ocean , 2009 .

[73]  K. Polzin An abyssal recipe , 2009 .

[74]  Markus Jochum,et al.  Impact of latitudinal variations in vertical diffusivity on climate simulations , 2009 .

[75]  G. Madec NEMO ocean engine , 2008 .

[76]  A. Thurnherr,et al.  Global Abyssal Mixing Inferred from Lowered ADCP Shear and CTD Strain Profiles , 2006 .

[77]  L. Rainville,et al.  Propagation of Low-Mode Internal Waves through the Ocean , 2006 .

[78]  Anthony Rosati,et al.  Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the Northern Atlantic , 2006 .

[79]  Jonas Nycander,et al.  Generation of internal waves in the deep ocean by tides , 2005 .

[80]  L. S. Laurent,et al.  An examination of the radiative and dissipative properties of deep ocean internal tides , 2004 .

[81]  J. Toole,et al.  Internal Tide Reflection and Turbulent Mixing on the Continental Slope , 2004 .

[82]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[83]  T. Hibiya,et al.  Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization , 2004 .

[84]  K. Polzin Idealized Solutions for the Energy Balance of the Finescale Internal Wave Field , 2004 .

[85]  Sonya Legg,et al.  Internal Wave Breaking at Concave and Convex Continental Slopes , 2003 .

[86]  Thomas B. Sanford,et al.  Reduced mixing from the breaking of internal waves in equatorial waters , 2003, Nature.

[87]  M. Alford,et al.  Improved global maps and 54‐year history of wind‐work on ocean inertial motions , 2003 .

[88]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[89]  L. St. Laurent,et al.  Estimating tidally driven mixing in the deep ocean , 2002 .

[90]  L. S. Laurent,et al.  The Role of Internal Tides in Mixing the Deep Ocean , 2002 .

[91]  Douglas R. Caldwell,et al.  Observations of Boundary Mixing over the Continental Slope , 2002 .

[92]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[93]  E. D’Asaro,et al.  The Wave–Turbulence Transition for Stratified Flows , 2000 .

[94]  J. Toole,et al.  Evidence for enhanced mixing over rough topography in the abyssal ocean , 2000, Nature.

[95]  M. Gregg Uncertainties and Limitations in Measuring ϵ and χT , 1999 .

[96]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[97]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[98]  J. M. Toole,et al.  Spatial Variability of Turbulent Mixing in the Abyssal Ocean , 1997, Science.

[99]  G. Mitchum,et al.  Surface manifestation of internal tides generated near Hawaii , 1996 .

[100]  P. J. Fox,et al.  Volcanic growth faults and the origin of Pacific abyssal hills , 1996, Nature.

[101]  Bruce M. Howe,et al.  Barotropic and Baroclinic Tides in the Central North Pacific Ocean Determined from Long-Range Reciprocal Acoustic Transmissions , 1995 .

[102]  K. Polzin,et al.  Finescale Parameterizations of Turbulent Dissipation , 1995 .

[103]  J. Toole,et al.  Estimates of Diapycnal Mixing in the Abyssal Ocean , 1994, Science.

[104]  C. Paulson,et al.  The Application of Internal-Wave Dissipation Models to a Region of Strong Mixing , 1993 .

[105]  R. Nerem,et al.  Variations of global mesoscale eddy energy observed from Geosat , 1990 .

[106]  M. Gregg,et al.  Scaling turbulent dissipation in the thermocline , 1989 .

[107]  Neil Pomphrey,et al.  Nonlinear interactions among internal gravity waves , 1986 .

[108]  F. Henyey,et al.  Energy and action flow through the internal wave field: An eikonal approach , 1986 .

[109]  Dirk Olbers,et al.  Models of the oceanic internal wave field , 1983 .

[110]  C. Eriksen Observations of internal wave reflection off sloping bottoms , 1982 .

[111]  T. Osborn,et al.  Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements , 1980 .

[112]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[113]  T. H. Bell,et al.  Topographically generated internal waves in the open ocean , 1975 .