High-fidelity PWM inverter for digital audio amplification: Spectral analysis, real-time DSP implementation, and results

A complete digital audio amplifier has been developed, implemented and tested. The process is entirely computational, and the output load and filter are the only analog components in the system. The process makes use of digital signal processing and a switching power stage to provide both high fidelity and high efficiency, beginning with a digital audio data stream. The advantages of naturally-sampled pulse-width modulation (PWM) are discussed in depth, including spectral analysis and comparisons to uniformly-sampled PWM. It is shown that natural PWM does not introduce audible distortion at switching frequencies consistent with power electronics practice. Interpolation methods for sample data conversion to natural PWM are discussed, and error analysis is presented based on Lagrange's Expansion Theorem. Noise-shaping processes are used to support high fidelity with practical values of time resolution. A counter conversion process enforces switching dead time in the inverter gate signals. The experimental full-bridge inverter implementation demonstrates that miniaturization is possible. A complete test system delivered more than 50 W into an 8 /spl Omega/ load with an efficiency of 80% and total harmonic distortion plus noise of 0.02%.

[1]  K. M. Smith,et al.  Realization of a digital PWM power amplifier using noise and ripple shaping , 1995, Proceedings of PESC '95 - Power Electronics Specialist Conference.

[2]  Mark Sandler,et al.  New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier , 1994 .

[3]  Mark Sandler,et al.  Design limitations for digital audio power amplification , 1991 .

[4]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[5]  Dilip V. Sarwate,et al.  Digital pulse width modulation: analysis, algorithms, and applications , 2002 .

[6]  Philip T. Krein,et al.  High-fidelity PWM inverter for audio amplification based on real-time DSP , 2000, COMPEL 2000. 7th Workshop on Computers in Power Electronics. Proceedings (Cat. No.00TH8535).

[7]  G. Temes Delta-sigma data converters , 1994 .

[8]  Peter Wood,et al.  Switching Power Converters , 1981 .

[9]  S. Riter Communication systems principles , 1979, Proceedings of the IEEE.

[10]  P. Krein,et al.  Noise properties of pulse-width modulated power converters: open-loop effects , 2000 .

[11]  Mark Sandler,et al.  Pseudo-natural pulse width modulation for high accuracy digital-to-analogue conversion , 1991 .

[12]  Gabor C. Temes,et al.  The optimization of bandlimited systems , 1973 .

[13]  T. J. Cavicchi DFT time-domain interpolation , 1992 .

[14]  A. Paul,et al.  Design issues for a 20-bit D/A converter based on pulse width modulation and noise shaping , 1993 .

[15]  Philip T. Krein,et al.  Elements of Power Electronics , 1997 .

[16]  Lars Risbo,et al.  Performance of an All-Digital Power Amplification System , 1998 .

[17]  Zabih Ghassemlooy,et al.  SPECTRAL STRUCTURE OF MULTITONE PULSE WIDTH MODULATION , 1991 .

[18]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[19]  Zbigniew Fedyczak,et al.  Digital control circuit for class-D audio power amplifier , 2001, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230).

[20]  Phil Mellor,et al.  Digital sampling process for audio class D, pulse width modulated power amplifiers , 1992 .

[21]  Karsten Nielsen PEDEC-a novel pulse referenced control method for high quality digital PWM switching power amplification , 1998, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196).

[22]  Rodger E. Ziemer,et al.  Principles of communications , 1976 .

[23]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[24]  Pallab Midya,et al.  Integral Noise Shaping for Quantization of Pulse-Width Modulation , 2000 .

[25]  Bill Roeckner,et al.  Computationally Efficient Conversion from Pulse-Code Modulation to Naturally Sampled Pulse-Width Modulation , 2000 .

[26]  P. Mellor,et al.  Reduction of spectral distortion in class D amplifiers by an enhanced pulse width modulation sampling process , 1991 .

[27]  Cesar Pascual,et al.  All-Digital Audio Amplifier , 2001 .

[28]  Seth R. Sanders,et al.  Architecture and IC implementation of a digital VRM controller , 2001, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230).

[29]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[30]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[31]  Karsten Nielsen,et al.  A Review and Comparison of Digital PWM Methods for Digital Pulse Modulation Amplifier (PMA) Systems , 1999 .

[32]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[33]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[34]  P. K. Chaturvedi,et al.  Communication Systems , 2002, IFIP — The International Federation for Information Processing.

[35]  Pallab Midya,et al.  Prediction Correction Algorithm for Natural Pulse-Width Modulation , 2000 .