Multi-scale experimental investigation and analytical micro-mechanical modeling to determine Young’s modulus of alkali-activated slag concrete

[1]  B. Lothenbach,et al.  Microstructure development of slag activated with sodium silicate solution: Experimental characterization and thermodynamic modeling , 2023, Journal of Building Engineering.

[2]  F. Dehn,et al.  Extension of the fib MC 2010 for basic and drying shrinkage of alkali‐activated slag concretes , 2022, Structural Concrete.

[3]  F. Dehn,et al.  Activation kinetic model and mechanisms for alkali-activated slag cements , 2022, Construction and Building Materials.

[4]  B. Lothenbach,et al.  Extensions of CASH+ thermodynamic solid solution model for the uptake of alkali metals and alkaline earth metals in C-S-H , 2022, Cement and Concrete Research.

[5]  B. Lothenbach,et al.  A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: Thermodynamic basis, methods, and Ca-Si-H2O core sub-model , 2022, Cement and Concrete Research.

[6]  Y. Elakneswaran,et al.  Proposing a three-phase model for predicting the mechanical properties of mortar and concrete , 2021, Materials Today Communications.

[7]  C. Hellmich,et al.  Nanoindentation-probed Oliver-Pharr half-spaces in alkali-activated slag-fly ash pastes: Multimethod identification of microelasticity and hardness , 2021, Mechanics of Advanced Materials and Structures.

[8]  Surendra P. Shah,et al.  Comparison on the properties of ITZs in fly ash-based geopolymer and Portland cement concretes with equivalent flowability , 2021 .

[9]  Yudong Han,et al.  Clustering analysis of grid nanoindentation data for cementitious materials , 2021, Journal of Materials Science.

[10]  G. Fang,et al.  Micromechanical analysis of interfacial transition zone in alkali-activated fly ash-slag concrete , 2021, Cement and Concrete Composites.

[11]  Hyeong-Ki Kim,et al.  Parametric modeling of autogenous shrinkage of sodium silicate-activated slag , 2020 .

[12]  B. Lothenbach,et al.  Thermodynamic study of cement/rock interactions using experimentally generated solubility data of zeolites , 2020, Cement and Concrete Research.

[13]  G. Ye,et al.  Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes , 2020, Cement and Concrete Research.

[14]  Hongyu Zhou,et al.  The characteristics and formation mechanism of the dark rim in alkali-activated slag , 2020 .

[15]  Mingzhong Zhang,et al.  Multiscale micromechanical analysis of alkali-activated fly ash-slag paste , 2020, Cement and Concrete Research.

[16]  B. Lothenbach,et al.  Synthesis, characterization, and thermodynamic study of selected Na-based zeolites , 2020, Cement and Concrete Research.

[17]  F. Ulm,et al.  Creep in reactive colloidal gels: A nanomechanical study of cement hydrates , 2020, Physical Review Research.

[18]  Georgios Konstantopoulos,et al.  Testing Novel Portland Cement Formulations with Carbon Nanotubes and Intrinsic Properties Revelation: Nanoindentation Analysis with Machine Learning on Microstructure Identification , 2020, Nanomaterials.

[19]  T. Divoux,et al.  Chemo-mechanical characterization of hydrated calcium-hydrosilicates with coupled Raman- and nanoindentation measurements , 2020, Applied Geochemistry.

[20]  Jianwei Sun,et al.  Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag , 2019, Journal of Thermal Analysis and Calorimetry.

[21]  Chenglin Wu,et al.  Binder-scale creep behavior of metakaolin-based geopolymer , 2019, Cement and Concrete Research.

[22]  V. Ducman,et al.  RILEM TC 247-DTA round robin test: mix design and reproducibility of compressive strength of alkali-activated concretes , 2019, Materials and Structures.

[23]  E. Koumoulos,et al.  Constituents Phase Reconstruction through Applied Machine Learning in Nanoindentation Mapping Data of Mortar Surface , 2019, Journal of Composites Science.

[24]  Yu Zhang,et al.  Effect of drying procedures on pore structure and phase evolution of alkali-activated cements , 2019, Cement and Concrete Composites.

[25]  Magdalena Balonis,et al.  Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials , 2019, Cement and Concrete Research.

[26]  Xinyuan Ke,et al.  Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements , 2018, Sustainability.

[27]  K. Behfarnia,et al.  The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete , 2018, Journal of Advanced Concrete Technology.

[28]  A. Giffin,et al.  Micromechanical properties of alkali-activated slag cement binders , 2018, Cement and Concrete Composites.

[29]  V. Vimonsatit,et al.  Creep properties of cement and alkali activated fly ash materials using nanoindentation technique , 2018 .

[30]  S. Grzeszczyk,et al.  Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete , 2018, Materials.

[31]  Wujian Long,et al.  Micro- and macro-scale characterization of nano-SiO2 reinforced alkali activated slag composites , 2018 .

[32]  K. Scrivener,et al.  A reassessment of mercury intrusion porosimetry by comparison with 1H NMR relaxometry , 2017 .

[33]  Rupert J. Myers,et al.  Phase diagrams for alkali-activated slag binders , 2017 .

[34]  Kai Gong,et al.  Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes , 2016 .

[35]  F. Benboudjema,et al.  Multiscale estimation of ageing viscoelastic properties of cement-based materials: A combined analytical and numerical approach to estimate the behaviour at early age , 2016 .

[36]  Vanissorn Vimonsatit,et al.  Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation , 2016 .

[37]  Farshad Rajabipour,et al.  Shrinkage characteristics of alkali-activated slag cements , 2015 .

[38]  Chuanlin Hu Nanoindentation as a tool to measure and map mechanical properties of hardened cement pastes , 2015 .

[39]  J. Deventer,et al.  The Role of Al in Cross‐Linking of Alkali‐Activated Slag Cements , 2015 .

[40]  Rupert J. Myers,et al.  A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation , 2014 .

[41]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[42]  F. Ulm,et al.  Nanoindentation investigation of creep properties of calcium silicate hydrates , 2013 .

[43]  Wenyi Yan,et al.  Oliver-Pharr indentation method in determining elastic moduli of shape memory alloys-A phase transformable material , 2013 .

[44]  D. Bentz,et al.  Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing , 2013 .

[45]  Vlastimil Králík,et al.  Micromechanical analysis of heterogeneous structural materials , 2013 .

[46]  K. Scrivener,et al.  Densification of C–S–H Measured by 1H NMR Relaxometry , 2013 .

[47]  Thomas Wagner,et al.  GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes , 2012, Computational Geosciences.

[48]  Hamlin M. Jennings,et al.  Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage , 2012 .

[49]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[50]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[51]  Petr Hlaváček,et al.  Micromechanical multiscale model for alkali activation of fly ash and metakaolin , 2011, Journal of Materials Science.

[52]  D. Kulik Improving the structural consistency of C-S-H solid solution thermodynamic models , 2011 .

[53]  Christian Hellmich,et al.  Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model , 2011 .

[54]  Vít Šmilauer,et al.  Nanoindentation characteristics of alkali-activated aluminosilicate materials , 2011 .

[55]  Yonghao Fang,et al.  Effect of Fly Ash, MgO and Curing Solution on the Chemical Shrinkage of Alkali-Activated Slag Cement , 2010 .

[56]  Paulo J.M. Monteiro,et al.  The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers , 2010 .

[57]  Roman Lackner,et al.  A multiscale creep model as basis for simulation of early-age concrete behavior , 2008 .

[58]  Mahalia Miller,et al.  Surface Roughness Criteria for Cement Paste Nanoindentation , 2008 .

[59]  Hamlin M. Jennings,et al.  Refinements to colloid model of C-S-H in cement: CM-II , 2008 .

[60]  Jeffrey J. Thomas,et al.  A multi-technique investigation of the nanoporosity of cement paste , 2007 .

[61]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[62]  K. Scrivener,et al.  The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete , 2004 .

[63]  Hjh Jos Brouwers,et al.  The work of Powers and Brownyard revisited: Part 1 , 2004 .

[64]  Franz-Josef Ulm,et al.  A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials , 2003 .

[65]  F. Puertas,et al.  Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator , 2003 .

[66]  Andrea Saltelli,et al.  Sensitivity Analysis for Importance Assessment , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[67]  James G. Berryman,et al.  Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations , 2001 .

[68]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[69]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[70]  Su-Seng Pang,et al.  Four-phase sphere modeling of effective bulk modulus of concrete , 1999 .

[71]  C. C. Yang Effect of the Transition Zone on the Elastic Moduli of Mortar , 1998 .

[72]  Edward J. Garboczi,et al.  Analytical formulas for interfacial transition zone properties , 1997 .

[73]  Robert W. Zimmerman,et al.  INHOMOGENEOUS INTERFACIAL TRANSITION ZONE MODEL FOR THE BULK MODULUS OF MORTAR , 1997 .

[74]  G. Weng,et al.  Elastic moduli of heterogeneous solids with ellipsoidal inclusions and elliptic cracks , 1995 .

[75]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[76]  H. Taylor Proposed Structure for Calcium Silicate Hydrate Gel , 1986 .

[77]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[78]  James G. Berryman,et al.  Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions , 1980 .

[79]  S. Kolias,et al.  Relationships between the static and the dynamic moduli of elasticity in cement stabilised materials , 1980 .

[80]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[81]  Zvi Hashin,et al.  Assessment of the Self Consistent Scheme Approximation: Conductivity of Particulate Composites , 1968 .

[82]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[83]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[84]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[85]  D. Cote,et al.  Clustering Algorithms for Nanomechanical Property Mapping and Resultant Microstructural Constituent and Phase Quantification , 2022, TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings.

[86]  Y. Elakneswaran,et al.  A two-stage model for the prediction of mechanical properties of cement paste , 2021 .

[87]  Yen Wei,et al.  A combined SPM/NI/EDS method to quantify properties of inner and outer C-S-H in OPC and slag-blended cement pastes , 2018 .

[88]  L. Sorelli,et al.  Automated coupling of NanoIndentation and Quantitative Energy-Dispersive Spectroscopy (NI-QEDS): A comprehensive method to disclose the micro-chemo-mechanical properties of cement pastes , 2018 .

[89]  P. Krivenko Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials , 2017 .

[90]  J. Provis Geopolymers and other alkali activated materials: why, how, and what? , 2014 .

[91]  M. Jirásek,et al.  Critical aspects of nano-indentation technique in application to hardened cement paste , 2011 .

[92]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[93]  Cengiz Duran Atiş,et al.  Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar , 2009 .

[94]  Surendra P. Shah,et al.  Nanomechanical Properties of Interfacial Transition Zone in Concrete , 2009 .

[95]  Zhihui Sun,et al.  Modeling the elastic properties of concrete composites: Experiment, differential effective medium theory, and numerical simulation , 2007 .

[96]  F. Ulm,et al.  The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling , 2004 .

[97]  L. Duclaux,et al.  A Structural Study of Dehydration/Rehydration of Tobermorite, a Model Cement Compound , 2002 .

[98]  K. Scrivener,et al.  The percolation of pore space in the cement paste/aggregate interfacial zone of concrete , 1996 .

[99]  Paulo J.M. Monteiro,et al.  Concrete: A three phase material , 1993 .

[100]  André Zaoui,et al.  n-Layered inclusion-based micromechanical modelling , 1993 .

[101]  E. Garboczi,et al.  Effects of Interfacial Zone Percolation on Cement-Based Composite Transport Properties , 1991 .

[102]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[103]  J. Walker,et al.  A STUDY OF THE RELATIONSHIP BETWEEN THE STATIC AND THE DYNAMIC MODULUS OF ELASTICITY AND OTHER PROPERTIES OF CERTAIN MATERIALS , 1966 .