Quantum algorithms for learning graphs and beyond

We study the problem of learning an unknown graph provided via an oracle using a quantum algorithm. We consider three query models. In the first model ("OR queries"), the oracle returns whether a given subset of the vertices contains any edges. In the second ("parity queries"), the oracle returns the parity of the number of edges in a subset. In the third model, we are given copies of the graph state corresponding to the graph. We give quantum algorithms that achieve speedups over the best possible classical algorithms in the OR and parity query models, for some families of graphs, and give quantum algorithms in the graph state model whose complexity is similar to the parity query model. For some parameter regimes, the speedups can be exponential in the parity query model. On the other hand, without any promise on the graph, no speedup is possible in the OR query model. A main technique we use is the quantum algorithm for solving the combinatorial group testing problem, for which a query-efficient quantum algorithm was given by Belovs. Here we additionally give a time-efficient quantum algorithm for this problem, based on the algorithm of Ambainis et al.\ for a "gapped" version of the group testing problem. We also give simple time-efficient quantum algorithms based on Fourier sampling and amplitude amplification for learning the exact-half and majority functions, which almost match the optimal complexity of Belovs' algorithms.

[1]  Vladimir Grebinski,et al.  Optimal Reconstruction of Graphs under the Additive Model , 1997, Algorithmica.

[2]  Cyrus Rashtchian,et al.  Edge Estimation with Independent Set Oracles , 2017, ITCS.

[3]  Ely Porat,et al.  Search Methodologies , 2022 .

[4]  Aleksandrs Belovs,et al.  Quantum Algorithms for Learning Symmetric Juntas via the Adversary Bound , 2013, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[5]  Noga Alon,et al.  Learning a Hidden Matching , 2004, SIAM J. Comput..

[6]  Troy Lee,et al.  Quantum algorithms for graph problems with cut queries , 2020, SODA.

[7]  Nikhil Srivastava,et al.  Learning and Verifying Graphs Using Queries with a Focus on Edge Counting , 2007, ALT.

[8]  Ashley Montanaro,et al.  The quantum query complexity of learning multilinear polynomials , 2011, Inf. Process. Lett..

[9]  Andris Ambainis,et al.  Efficient Quantum Algorithms for (Gapped) Group Testing and Junta Testing , 2015, SODA.

[10]  Rocco A. Servedio,et al.  Equivalences and Separations Between Quantum and Classical Learnability , 2004, SIAM J. Comput..

[11]  Dana Angluin,et al.  Learning a hidden graph using O(logn) queries per edge , 2008, J. Comput. Syst. Sci..

[12]  Matthew Aldridge,et al.  Group testing: an information theory perspective , 2019, Found. Trends Commun. Inf. Theory.

[13]  Hung-Lin Fu,et al.  Reconstruction of hidden graphs and threshold group testing , 2011, J. Comb. Optim..

[14]  Vladimir Grebinski,et al.  Optimal query bounds for reconstructing a Hamiltonian cycle in complete graphs , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[15]  Armando J. Pinho,et al.  The Rank of Random Binary Matrices and Distributed Storage Applications , 2013, IEEE Communications Letters.

[16]  Rocco A. Servedio,et al.  Improved Bounds on Quantum Learning Algorithms , 2004, Quantum Inf. Process..

[17]  Nader H. Bshouty,et al.  Reconstructing Weighted Graphs with Minimal Query Complexity , 2009, ALT.

[18]  Hung-Lin Fu,et al.  Learning a hidden graph , 2014, Optim. Lett..

[19]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[20]  Noga Alon,et al.  An optimal procedure for gap closing in whole genome shotgun sequencing , 2001, RECOMB.

[21]  Supartha Podder,et al.  Symmetries, Graph Properties, and Quantum Speedups , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[22]  D. Du,et al.  Combinatorial Group Testing and Its Applications , 1993 .

[23]  George Atia,et al.  Boolean Compressed Sensing and Noisy Group Testing , 2009, IEEE Transactions on Information Theory.

[24]  Joseph Fitzsimons,et al.  Fast graph operations in quantum computation , 2015, ArXiv.

[25]  Noga Alon,et al.  Learning a Hidden Subgraph , 2004, SIAM J. Discret. Math..

[26]  R. O'Donnell,et al.  Computational applications of noise sensitivity , 2003 .

[27]  Vladimir Grebinski,et al.  Reconstructing a Hamiltonian Cycle by Querying the Graph: Application to DNA Physical Mapping , 1998, Discret. Appl. Math..

[28]  Mehdi Mhalla,et al.  Quantum Query Complexity of Some Graph Problems , 2004, SIAM J. Comput..

[29]  Dana Angluin,et al.  Learning a Hidden Graph Using O(log n) Queries Per Edge , 2004, COLT.

[30]  Dana Angluin,et al.  Learning a Hidden Hypergraph , 2005, J. Mach. Learn. Res..

[31]  Venkatesh Saligrama,et al.  Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[32]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[33]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[34]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[35]  Mathilde Bouvel,et al.  Combinatorial Search on Graphs Motivated by Bioinformatics Applications: A Brief Survey , 2005, WG.

[36]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[37]  Nader H. Bshouty,et al.  On Learning Graphs with Edge-Detecting Queries , 2018, ALT.

[38]  Simon Litsyn,et al.  Survey of binary Krawtchouk polynomials , 1999, Codes and Association Schemes.

[39]  Jeong Han Kim,et al.  Optimal query complexity bounds for finding graphs , 2008, Artif. Intell..

[40]  Hung-Lin Fu,et al.  Nonadaptive algorithms for threshold group testing , 2009, Discret. Appl. Math..

[41]  Ashley Montanaro,et al.  Learning stabilizer states by Bell sampling , 2017, 1707.04012.

[42]  Andris Ambainis,et al.  Quantum algorithms for search with wildcards and combinatorial group testing , 2012, Quantum Inf. Comput..