Bayesian analysis of identification performance in monkey visual cortex: Nonlinear mechanisms and stimulus certainty

[1]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[2]  Wilson S. Geisler,et al.  Visual cortex neurons in monkey and cat: contrast response nonlinearities and stimulus selectivity , 1994, Other Conferences.

[3]  L. Palmer,et al.  Organization of simple cell responses in the three-dimensional (3-D) frequency domain , 1994, Visual Neuroscience.

[4]  A. B. Bonds,et al.  Computational Vision Based on Neurobiology , 1993 .

[5]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[6]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[8]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[9]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[10]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[11]  S S Saunders,et al.  Discrimination performance of single neurons: rate and temporal-pattern information. , 1991, Journal of neurophysiology.

[12]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[13]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[14]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[15]  S. F. Bowne Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination , 1990, Vision Research.

[16]  D. G. Albrecht,et al.  Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function , 1989, Vision Research.

[17]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[19]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[20]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  T E Cohn,et al.  Receiver operating characteristic analysis. Application to the study of quantum fluctuation effects in optic nerve of Rana pipiens , 1975, The Journal of general physiology.

[22]  A. Leventhal The neural basis of visual function , 1991 .

[23]  J. Robson Neural coding of contrast in the visual system , 1991, Optical Society of America Annual Meeting.

[24]  Andrew Parker,et al.  Detection and discrimination mechanisms in the striate cortex of Old World monkeys , 1990 .

[25]  P. Lennie,et al.  Spatial frequency analysis in the visual system. , 1985, Annual review of neuroscience.

[26]  G. Westheimer Spatial vision. , 1984, Annual review of psychology.

[27]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[28]  H. Barlow,et al.  Three factors limiting the reliable detection of light by retinal ganglion cells of the cat , 1969, The Journal of physiology.