Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand

Abstract An accurate estimation of the strain state of a strand inside a coil is a crucial point in the prediction of Nb3Sn conductor performance, since Nb3Sn based strands show a strain-dependence of their critical parameters. To perform a numerical analysis of a superconducting coil it would be impossible to operate a spatial discretization fine enough to take into consideration each single material. Therefore, we make use of homogenisation methods, so that the strand (or the triplet or higher order bundles) can be schematized as an equivalent homogeneous material. This paper presents a general overview of different ways to approach a study of superconducting strands using homogenisation techniques. We aim to point out that there is not a “unique best approach”, but different methods have to be chosen depending upon the microstructure of the strand. Three kinds of strands are taken into consideration to exemplify the various techniques: the strand from European Advanced Superconductors (EAS), from Furukawa (FUR) and from Outu Kumpu (OUK) company. For the three strands the thermal strain due to the cool-down from reaction temperature to the coil operating conditions is calculated, making use of the effective properties obtained via the various approaches.

[1]  R. Hill,et al.  CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal , 1951 .

[2]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[3]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[4]  Zvi Hashin,et al.  Assessment of the Self Consistent Scheme Approximation: Conductivity of Particulate Composites , 1968 .

[5]  T. Olson Improvements on Taylor's upper bound for rigid-plastic composites , 1994 .

[6]  N. Mitchell,et al.  Conductors of the ITER magnets , 2001 .

[7]  Pierre Suquet,et al.  Overall potentials and extremal surfaces of power law or ideally plastic composites , 1993 .

[8]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .

[9]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[10]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[11]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[12]  J. Willis,et al.  Variational Principles for Inhomogeneous Non-linear Media , 1985 .

[13]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[15]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[16]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[17]  J. Ekin,et al.  Strain scaling law for flux pinning in practical superconductors. Part 1: Basic relationship and application to Nb3Sn conductors , 1980 .

[18]  B. Paul PREDICTION OF ELASTIC CONSTANTS OF MULTI-PHASE MATERIALS , 1959 .

[19]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[20]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[21]  J. Willis,et al.  The overall elastic response of composite materials , 1983 .

[22]  D. Kinderlehrer,et al.  Homogenization and effective moduli of materials and media , 1986 .

[23]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[24]  J. Willis Variational Estimates for the Overall Response of an Inhomogeneous Nonlinear Dielectric , 1986 .

[25]  C. Boutin,et al.  Microstructural influence on heat conduction , 1995 .

[26]  B. Schrefler,et al.  Multiscale analysis of the influence of the triplet helicoidal geometry on the strain state of a Nb3Sn based strand for ITER coils , 2005 .

[27]  Bernard Schrefler,et al.  A multilevel homogenised model for superconducting strand thermomechanics , 2005 .

[28]  P. Ponte Castañeda,et al.  New variational principles in plasticity and their application to composite materials , 1992 .

[29]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[30]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[31]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[32]  J. Willis,et al.  Some simple explicit bounds for the overall behaviour of nonlinear composites , 1992 .