Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand
暂无分享,去创建一个
[1] R. Hill,et al. CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal , 1951 .
[2] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[3] R. Hill,et al. XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .
[4] Zvi Hashin,et al. Assessment of the Self Consistent Scheme Approximation: Conductivity of Particulate Composites , 1968 .
[5] T. Olson. Improvements on Taylor's upper bound for rigid-plastic composites , 1994 .
[6] N. Mitchell,et al. Conductors of the ITER magnets , 2001 .
[7] Pierre Suquet,et al. Overall potentials and extremal surfaces of power law or ideally plastic composites , 1993 .
[8] S. Shtrikman,et al. A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .
[9] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .
[10] R. Hill. A self-consistent mechanics of composite materials , 1965 .
[11] E. Kröner. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .
[12] J. Willis,et al. Variational Principles for Inhomogeneous Non-linear Media , 1985 .
[13] J. Hutchinson,et al. Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[14] André Zaoui,et al. An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .
[15] R. Hill. The Elastic Behaviour of a Crystalline Aggregate , 1952 .
[16] S. Shtrikman,et al. A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .
[17] J. Ekin,et al. Strain scaling law for flux pinning in practical superconductors. Part 1: Basic relationship and application to Nb3Sn conductors , 1980 .
[18] B. Paul. PREDICTION OF ELASTIC CONSTANTS OF MULTI-PHASE MATERIALS , 1959 .
[19] S. Shtrikman,et al. On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .
[20] B. Budiansky. On the elastic moduli of some heterogeneous materials , 1965 .
[21] J. Willis,et al. The overall elastic response of composite materials , 1983 .
[22] D. Kinderlehrer,et al. Homogenization and effective moduli of materials and media , 1986 .
[23] Rodney Hill,et al. Continuum micro-mechanics of elastoplastic polycrystals , 1965 .
[24] J. Willis. Variational Estimates for the Overall Response of an Inhomogeneous Nonlinear Dielectric , 1986 .
[25] C. Boutin,et al. Microstructural influence on heat conduction , 1995 .
[26] B. Schrefler,et al. Multiscale analysis of the influence of the triplet helicoidal geometry on the strain state of a Nb3Sn based strand for ITER coils , 2005 .
[27] Bernard Schrefler,et al. A multilevel homogenised model for superconducting strand thermomechanics , 2005 .
[28] P. Ponte Castañeda,et al. New variational principles in plasticity and their application to composite materials , 1992 .
[29] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[30] Pedro Ponte Castañeda. The effective mechanical properties of nonlinear isotropic composites , 1991 .
[31] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[32] J. Willis,et al. Some simple explicit bounds for the overall behaviour of nonlinear composites , 1992 .