Finite set of invariants to characterize local Clifford equivalence of stabilizer states
暂无分享,去创建一个
[1] Eric M. Rains. Quantum Codes of Minimum Distance Two , 1999, IEEE Trans. Inf. Theory.
[2] Bart De Moor,et al. Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.
[3] H. Briegel,et al. Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.
[4] Eric M. Rains. Quantum Weight Enumerators , 1998, IEEE Trans. Inf. Theory.
[5] B. De Moor,et al. Local unitary versus local Clifford equivalence of stabilizer states , 2005 .
[6] W Dür,et al. Multiparticle entanglement purification for graph states. , 2003, Physical review letters.
[7] F. Verstraete,et al. Valence-bond states for quantum computation , 2003, quant-ph/0311130.
[8] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[9] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[10] Raymond Laflamme,et al. Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .
[11] André Bouchet,et al. Recognizing locally equivalent graphs , 1993, Discret. Math..
[12] J. Eisert,et al. Multiparty entanglement in graph states , 2003, quant-ph/0307130.
[13] Bart De Moor,et al. Efficient algorithm to recognize the local Clifford equivalence of graph states , 2004 .
[14] Bart De Moor,et al. Local invariants of stabilizer codes , 2004 .