Bacterial translocation (BT) in cirrhosis

Gut flora and bacterial translocation (BT) play an important role in the pathogenesis of the complications of cirrhosis. Research on the pathogenesis of BT and its clinical significance transcends established boundaries between microbiology, cell biology, intestinal pathophysiology, and immunology. This review delineates multiple mechanisms involved in the process of BT, with an emphasis on alterations in intestinal flora and mucosal barrier function, particularly immunological defense mechanisms. Current knowledge on the innate and adaptive immune response that allows a “friendly” communication between bacteria and host is summarized, and alterations occurring in cirrhosis that may facilitate BT are discussed. In addition, definition of a “pathological” BT is proposed together with an analysis of the anatomical site and route of BT. Finally, therapeutic approaches for the prevention of BT in experimental and human cirrhosis are reviewed. Future research in the field of BT in cirrhosis will allow the development of new therapeutic targets in the prevention of infections and other complications of cirrhosis. (HEPATOLOGY 2005;41:422–433.)

[1]  Chi-Sen Chang,et al.  Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis , 1998, Hepatology.

[2]  R. Forsythe,et al.  Lipopolysaccharide-Induced Enterocyte-Derived Nitric Oxide Induces Intestinal Monolayer Permeability in an Autocrine Fashion , 2002, Shock.

[3]  A. Schreiber,et al.  Impaired function of macrophage Fc gamma receptors and bacterial infection in alcoholic cirrhosis. , 1994, The New England journal of medicine.

[4]  C. Wells Relationship between intestinal microecology and the translocation of intestinal bacteria , 1990, Antonie van Leeuwenhoek.

[5]  J. Alverdy,et al.  Gut-Derived Sepsis Occurs When the Right Pathogen With the Right Virulence Genes Meets the Right Host: Evidence for In Vivo Virulence Expression in Pseudomonas aeruginosa , 2000, Annals of surgery.

[6]  C. Defilippi,et al.  Abnormalities in proximal small bowel motility in patients with cirrhosis , 1993, Hepatology.

[7]  M. Gassull,et al.  Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats , 2003, Hepatology.

[8]  E. Björnsson,et al.  Etiology of portal hypertension may influence gastrointestinal transit , 2003, Scandinavian journal of gastroenterology.

[9]  B. Nilsson,et al.  Defective Fc receptor-mediated clearance in patients with primary biliary cirrhosis. , 1991, Gastroenterology.

[10]  F. Foschi,et al.  Impaired tuftsin activity in cirrhosis: relationship with splenic function and clinical outcome , 2002, Gut.

[11]  H. Tilg,et al.  Serum levels of cytokines in chronic liver diseases. , 1992, Gastroenterology.

[12]  William C. Parks,et al.  Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria , 2000, Nature Immunology.

[13]  M. Chamaillard,et al.  Nods, Nalps and Naip: intracellular regulators of bacterial‐induced inflammation , 2003, Cellular microbiology.

[14]  L. W. Chen,et al.  Specific inhibition of iNOS decreases the intestinal mucosal peroxynitrite level and improves the barrier function after thermal injury. , 1998, Burns : journal of the International Society for Burn Injuries.

[15]  S. Ahrné,et al.  Effects of different probiotic strains of Lactobacillus and Bifidobacterium on bacterial translocation and liver injury in an acute liver injury model. , 2001, International journal of food microbiology.

[16]  S. Benlloch,et al.  A sequential study of serum bacterial DNA in patients with advanced cirrhosis and ascites , 2004, Hepatology.

[17]  A. Schreiber,et al.  Impaired Function of Macrophage Fcγ Receptors and Bacterial Infection in Alcoholic Cirrhosis , 1994 .

[18]  K. Botzenhart,et al.  Effect of comprehensive validation of the template isolation procedure on the reliability of bacteraemia detection by a 16S rRNA gene PCR. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[19]  M. Kagnoff,et al.  Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. , 1999, Journal of immunology.

[20]  J. Alexander,et al.  Comparison of translocation of different types of microorganisms from the intestinal tract of burned mice. , 2001, Shock.

[21]  J. Doré,et al.  Comparative Study of Bacterial Groups within the Human Cecal and Fecal Microbiota , 2001, Applied and Environmental Microbiology.

[22]  E. Deitch,et al.  Bacterial translocation is inhibited in inducible nitric oxide synthase knockout mice after endotoxin challenge but not in a model of bacterial overgrowth. , 1997, Archives of surgery.

[23]  J. Such,et al.  Spontaneous Bacterial Peritonitis , 1997, Seminars in liver disease.

[24]  Mourad Sahbatou,et al.  Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease , 2001, Nature.

[25]  G. Astaldi,et al.  Peroral biopsy of the intestinal mucosa in hepatic cirrhosis , 1960, The American Journal of Digestive Diseases.

[26]  L. Bertók Physico-Chemical Defense of Vertebrate Organisms: The Role of Bile Acids in Defense Against Bacterial Endotoxins , 2015, Perspectives in biology and medicine.

[27]  P. Zapater,et al.  Bacterial DNA activates cell mediated immune response and nitric oxide overproduction in peritoneal macrophages from patients with cirrhosis and ascites , 2004, Gut.

[28]  A. Flahault,et al.  Norfloxacin primary prophylaxis of bacterial infections in cirrhotic patients with ascites: a double-blind randomized trial. , 1998, Journal of hepatology.

[29]  K. Anderson,et al.  Significance of serum complement levels in chronic liver disease. , 1972, Gastroenterology.

[30]  J. Llach,et al.  Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: Results of a double‐blind, placebo‐controlled trial , 1990, Hepatology.

[31]  R. Groszmann,et al.  Effect of Lactobacillus-Fermented Diets on Bacterial Translocation and Intestinal Flora in Experimental Prehepatic Portal Hypertension , 2003, Digestive Diseases and Sciences.

[32]  A. Albillos,et al.  Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites , 2000, Hepatology.

[33]  R. Berg,et al.  Studies of the route, magnitude, and time course of bacterial translocation in a model of systemic inflammation. , 1991, Archives of surgery.

[34]  C. Margarit,et al.  Increased tumour necrosis factor α production in mesenteric lymph nodes of cirrhotic patients with ascites , 2003, Gut.

[35]  Álvaro González,et al.  Effect of nitric oxide in the differentiation of human monocytes to dendritic cells. , 2004, Immunology letters.

[36]  S. Moncada,et al.  The actions of nitric oxide donors in the prevention or induction of injury to the rat gastric mucosa , 1993, British journal of pharmacology.

[37]  V. Gurewich,et al.  α2-PLASMIN INHIBITOR DEFICIENCY , 1979, The Lancet.

[38]  S. Bhatia,et al.  Congestive jejunopathy in portal hypertension. , 1993, Gut.

[39]  R. Berg,et al.  Bacterial translocation from the gastrointestinal tract of athymic (nu/nu) mice , 1980, Infection and immunity.

[40]  W. Jiménez,et al.  Nitric oxide production by peritoneal macrophages of cirrhotic rats: a host response against bacterial peritonitis. , 1997, Gastroenterology.

[41]  R. Wiest,et al.  Gut microflora in the pathogenesis of the complications of cirrhosis. , 2004, Best practice & research. Clinical gastroenterology.

[42]  Roger Williams,et al.  Peripheral blood mononuclear cell expression of toll‐like receptors and relation to cytokine levels in cirrhosis , 2003, Hepatology.

[43]  P. Neuhaus,et al.  Einfluss von Probiotika und Ballaststoffen auf die Inzidenz bakterieller Infektionen nach viszeralchirurgischen Eingriffen - Ergebnisse einer prospektiven Studie , 2002 .

[44]  O. Wagner,et al.  Endotoxaemia modulates Toll‐like receptors on leucocytes in humans , 2003, British journal of haematology.

[45]  X. Cussó,et al.  Norfloxacin prevents bacterial infection in cirrhotics with gastrointestinal hemorrhage. , 1992, Gastroenterology.

[46]  Judy H. Cho,et al.  [Letters to Nature] , 1975, Nature.

[47]  I. Seres,et al.  Low C3 in cirrhotic ascites predisposes to spontaneous bacterial peritonitis. , 1988, Journal of hepatology.

[48]  B. Campillo,et al.  Intestinal permeability in liver cirrhosis: relationship with severe septic complications. , 1999, European journal of gastroenterology & hepatology.

[49]  O. Bulbena,et al.  Increased serum nitrite and nitrate levels in patients with cirrhosis: Relationship to endotoxemia , 1993, Hepatology.

[50]  R. Zinkernagel,et al.  A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. , 2000, Science.

[51]  M. Fink,et al.  Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. , 1997, Gastroenterology.

[52]  C. Guarner,et al.  Intestinal bacterial overgrowth and bacterial translocation in cirrhotic rats with ascites. , 1997, Journal of hepatology.

[53]  V. Arroyo,et al.  Oral, nonabsorbable antibiotics prevent infection in cirrhotics with gastrointestinal hemorrhage , 1985, Hepatology.

[54]  R. Berg,et al.  Secretory Immunoglobulin A, Intestinal Mucin, and Mucosal Permeability in Nutritionally Induced Bacterial Translocation in Rats , 1994, Annals of surgery.

[55]  J. Calleja,et al.  Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement , 2003, Hepatology.

[56]  M. Humbert,et al.  Prevention of gram-negative translocation reduces the severity of hepatopulmonary syndrome. , 2002, American journal of respiratory and critical care medicine.

[57]  R. Berg,et al.  T lymphocytes in host defense against bacterial translocation from the gastrointestinal tract , 1994, Infection and immunity.

[58]  P. Kalinski,et al.  T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. , 1999, Immunology today.

[59]  M. Navasa,et al.  Bacterial infections in cirrhosis: Epidemiological changes with invasive procedures and norfloxacin prophylaxis , 2002, Hepatology.

[60]  Shun-cai Zhang,et al.  Effect of cisapride on intestinal bacterial and endotoxin translocation in cirrhosis. , 2003, World journal of gastroenterology.

[61]  R. Ezzell,et al.  Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. , 1995, The American journal of physiology.

[62]  R. Bailey,et al.  METABOLIC INHIBITION OF POLYMORPHONUCLEAR LEUCOCYTES IN FULMINANT HEPATIC FAILURE , 1976, The Lancet.

[63]  C. Peralta,et al.  Effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora and bacterial translocation in rats with experimental cirrhosis. , 2002, Journal of hepatology.

[64]  J. F. Brown,et al.  Nitric oxide synthase induction and intestinal epithelial cell viability in rats. , 1993, The American journal of physiology.

[65]  J. Kalff,et al.  Leukocytes of the intestinal muscularis: their phenotype and isolation , 1998, Journal of leukocyte biology.

[66]  J. Schölmerich,et al.  Interleukin‐1 production by mouse macrophages is regulated in a feedback fashion by nitric oxide , 1999, Journal of leukocyte biology.

[67]  J. Tack,et al.  Effect of acute esophagitis on basal esophageal intraluminal electrical impedace , 2003 .

[68]  J. Llovet,et al.  Selective intestinal decontamination with norfloxacin reduces bacterial translocation in ascitic cirrhotic rats exposed to hemorrhagic shock , 1996, Hepatology.

[69]  R. Berg,et al.  Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. , 1988, The Journal of infectious diseases.

[70]  E. Cabré,et al.  Effect of cisapride on intestinal bacterial overgrowth and bacterial translocation in cirrhosis , 2000, Hepatology.

[71]  A. Macpherson,et al.  Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria , 2004, Science.

[72]  M. Andreu,et al.  Continuous versus inpatient prophylaxis of the first episode of spontaneous bacterial peritonitis with norfloxacin , 1997, Hepatology.

[73]  M. Álvarez-Mon,et al.  Tumour necrosis factor-alpha expression by activated monocytes and altered T-cell homeostasis in ascitic alcoholic cirrhosis: amelioration with norfloxacin. , 2004, Journal of hepatology.

[74]  R. Groszmann,et al.  The diagnostic and predictive value of ascites nitric oxide levels in patients with spontaneous bacterial peritonitis , 1998, Hepatology.

[75]  M. Kuzu,et al.  Obstructive jaundice promotes bacterial translocation in humans. , 1999, Hepato-gastroenterology.

[76]  J. Hoefs,et al.  Opsonic activity of human ascitic fluid: A potentially important protective mechanism against spontaneous bacterial peritonitis , 1985, Hepatology.

[77]  R. Gamelli,et al.  Gut-associated lymphoid T cell suppression enhances bacterial translocation in alcohol and burn injury. , 2002, American journal of physiology. Gastrointestinal and liver physiology.

[78]  C. Henderson,et al.  Role of WHO. , 1982, Experientia. Supplementum.

[79]  J. Aponte,et al.  Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis , 2001, American Journal of Gastroenterology.

[80]  S. Shibolet,et al.  IMPAIRED MONOCYTE FUNCTION IN LIVER CIRRHOSIS , 1979, The Lancet.

[81]  D. Powell,et al.  Barrier function of epithelia. , 1981, The American journal of physiology.

[82]  Wells Cl Colonization and translocation of intestinal bacterial flora. , 1996 .

[83]  J. Aparicio,et al.  Intestinal permeability is increased in patients with advanced cirrhosis. , 2003, Hepato-gastroenterology.

[84]  C. Taylor,et al.  The distribution of muramidase (lysozyme) in human tissues. , 1975, Journal of clinical pathology.

[85]  J. Aparicio,et al.  Ultrastructural characteristics of distal duodenum mucosa in patients with cirrhosis , 2002, European journal of gastroenterology & hepatology.

[86]  S. Erlandsen,et al.  Inhibitory effect of bile on bacterial invasion of enterocytes: possible mechanism for increased translocation associated with obstructive jaundice. , 1995, Critical care medicine.

[87]  W. Reeves,et al.  Analysis of 16S rRNA gene sequences and circulating cell-free DNA from plasma of chronic fatigue syndrome and non-fatigued subjects , 2002, BMC Microbiology.

[88]  J. Macfie,et al.  Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity , 1999, Gut.

[89]  I. Rajkovic,et al.  Abnormalities of neutrophil phagocytosis, intracellular killing and metabolic activity in alcoholic cirrhosis and hepatitis , 1986, Hepatology.

[90]  D. Relman,et al.  Does Blood of Healthy Subjects Contain Bacterial Ribosomal DNA? , 2001, Journal of Clinical Microbiology.

[91]  D. D. Tran Translocation of enteric bacteria in humans , 1994, The British journal of surgery.

[92]  M. Navasa,et al.  Failure of Lactobacillus spp. to prevent bacterial translocation in a rat model of experimental cirrhosis. , 2002, Journal of hepatology.

[93]  U. Akarca,et al.  Intestinal permeability in liver cirrhosis. , 1999, European Journal of Gastroenterology and Hepathology.

[94]  G. Rogler,et al.  Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. , 2004, Blood.

[95]  S. Akira,et al.  Toll-like receptors: critical proteins linking innate and acquired immunity , 2001, Nature Immunology.

[96]  G. Jennings,et al.  The Effect of Selective Intestinal Decontamination on the Hyperdynamic Circulatory State in Cirrhosis , 2003, Annals of Internal Medicine.

[97]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[98]  R. Lehrer,et al.  Bactericidal properties of murine intestinal phospholipase A2. , 1995, The Journal of clinical investigation.

[99]  G. Jennings,et al.  Effect of Fluoroquinolone on the Enhanced Nitric Oxide-Induced Peripheral Vasodilation Seen in Cirrhosis , 1997, Annals of Internal Medicine.

[100]  S. Foster,et al.  Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2 , 2003, The Journal of Biological Chemistry.

[101]  G. Astaldi,et al.  Biopsy of the normal intestine , 1960, The American Journal of Digestive Diseases.

[102]  E. Wisse,et al.  The role of bile acids in the development of endotoxemia during obstructive jaundice in the rat. , 1990, Journal of hepatology.

[103]  A. West,et al.  Bacterial translocation to mesenteric lymph nodes is increased in cirrhotic rats with ascites. , 1995, Gastroenterology.

[104]  A. Khoruts,et al.  Circulating tumor necrosis factor, interleukin‐1 and interleukin‐6 concentrations in chronic alcoholic patients , 1991, Hepatology.

[105]  E. Boedeker Adherent bacteria: breaching the mucosal barrier? , 1994, Gastroenterology.

[106]  J. Marshall,et al.  The microbiology of multiple organ failure. The proximal gastrointestinal tract as an occult reservoir of pathogens. , 1988, Archives of surgery.

[107]  D. Seehofer,et al.  [Influence of probiotics and fibre on the incidence of bacterial infections following major abdominal surgery - results of a prospective trial]. , 2002, Zeitschrift fur Gastroenterologie.

[108]  R. Callard,et al.  Toll‐like receptor 2 (TLR2) and TLR4 are present inside human dendritic cells, associated with microtubules and the Golgi apparatus but are not detectable on the cell surface: integrity of microtubules is required for interleukin‐12 production in response to internalized bacteria , 2004, Immunology.

[109]  M. Fink,et al.  Determinants of intestinal barrier failure in critical illness. , 1996, British journal of anaesthesia.

[110]  C. Wells Colonization and translocation of intestinal bacterial flora. , 1996, Transplantation proceedings.

[111]  J. Kraehenbuhl,et al.  Keeping the Gut Microflora at Bay , 2004, Science.

[112]  N. Graudal,et al.  Acquired C3 deficiency in patients with alcoholic cirrhosis predisposes to infection and increased mortality. , 1997, Gut.

[113]  P. Kubes,et al.  Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. , 1993, The American journal of physiology.

[114]  R. Simmons,et al.  Role of anaerobic flora in the translocation of aerobic and facultatively anaerobic intestinal bacteria , 1987, Infection and immunity.

[115]  J. Macfie,et al.  The prevalence of gut translocation in humans. , 1994, Gastroenterology.

[116]  P. Kubes,et al.  A critical role for nitric oxide in intestinal barrier function and dysfunction. , 1996, The American journal of physiology.

[117]  A. Imaoka,et al.  Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ‐free mice , 1996, European journal of immunology.

[118]  F. Rodríguez-Valera,et al.  Detection and identification of bacterial DNA in patients with cirrhosis and culture‐negative, nonneutrocytic ascites , 2002, Hepatology.

[119]  R. Berg,et al.  Relationship between cecal population levels of indigenous bacteria and translocation to the mesenteric lymph nodes , 1983, Infection and immunity.

[120]  A. Ramachandran,et al.  Intestinal mucosal alterations in experimental cirrhosis in the rat: Role of oxygen free radicals , 2002, Hepatology.

[121]  C. Guarner,et al.  Effect of Long-Term Trimethoprim-Sulfamethoxazole Prophylaxis on Ascites Formation, Bacterial Translocation, Spontaneous Bacterial Peritonitis, and Survival in Cirrhotic Rats , 1999, Digestive Diseases and Sciences.

[122]  C. Griscelli,et al.  The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions , 1978, The Journal of experimental medicine.

[123]  T. Lyberg,et al.  Expression and involvement of Toll-like receptors (TLR)2, TLR4, and CD14 in monocyte TNF-alpha production induced by lipopolysaccharides from Neisseria meningitidis. , 2003, Medical science monitor : international medical journal of experimental and clinical research.

[124]  R. Berg,et al.  Translocation of Certain Indigenous Bacteria from the Gastrointestinal Tract to the Mesenteric Lymph Nodes and Other Organs in a Gnotobiotic Mouse Model , 1979, Infection and immunity.

[125]  Le Shen,et al.  A porous defense: the leaky epithelial barrier in intestinal disease , 2004, Laboratory Investigation.

[126]  E. Dupont,et al.  Excessive in vitro bacterial lipopolysaccharide‐induced production of monokines in cirrhosis , 1990, Hepatology.

[127]  I. Hirata,et al.  Increased prevalence of intestinal inflammation in patients with liver cirrhosis. , 1999, World journal of gastroenterology.

[128]  I. Brook,et al.  Recovery of aerobic and anaerobic bacteria from irradiated mice , 1984, Infection and immunity.

[129]  F. Cumsille,et al.  Long-term treatment with cisapride and antibiotics in liver cirrhosis: effect on small intestinal motility, bacterial overgrowth, and liver function , 2001, American Journal of Gastroenterology.

[130]  L. Grande,et al.  Bacterial translocation of enteric organisms in patients with cirrhosis. , 2001, Journal of hepatology.

[131]  M. Ljungdahl,et al.  Bacterial Translocation in Experimental Shock Is Dependent on the Strains in the Intestinal Flora , 2000, Scandinavian journal of gastroenterology.

[132]  U. Böcker,et al.  Differential expression of toll-like receptors 2 and 4 in patients with liver cirrhosis , 2003, European journal of gastroenterology & hepatology.

[133]  J. Alexander,et al.  The ability of endotoxin-stimulated enterocytes to produce bactericidal factors , 2002, Critical care medicine.

[134]  N. Boughton-Smith,et al.  Role of nitric oxide in maintaining vascular integrity in endotoxin‐induced acute intestinal damage in the rat , 1990, British journal of pharmacology.

[135]  R. Groszmann,et al.  The paradox of nitric oxide in cirrhosis and portal hypertension: Too much, not enough , 2002, Hepatology.

[136]  J. J. Stewart,et al.  Intestinal myoelectrical activity and transit time in chronic portal hypertension. , 1992, The American journal of physiology.

[137]  J. Reynolds,et al.  Gut barrier failure in experimental obstructive jaundice. , 1996, The Journal of surgical research.

[138]  J. Wallace,et al.  Nitric oxide in mucosal defense: a little goes a long way. , 2000, Gastroenterology.

[139]  J. Macfie,et al.  Microbiology of bacterial translocation in humans , 1998, Gut.

[140]  M. Selsted,et al.  Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. , 2000, Nature immunology.

[141]  J. Aponte,et al.  Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia , 2002, American Journal of Gastroenterology.

[142]  M. I. Halliday,et al.  Role of the gut in the pathophysiology of extrahepatic biliary obstruction. , 1996, Gut.

[143]  C. Guarner,et al.  Effect of selective bowel decontamination with norfloxacin on spontaneous bacterial peritonitis, translocation, and survival in an animal model of cirrhosis , 1995, Hepatology.

[144]  M. Zuckerman,et al.  Assessment of Intestinal Permeability and Absorption in Cirrhotic Patients with Ascites Using Combined Sugar Probes , 2004, Digestive Diseases and Sciences.

[145]  E. Deitch,et al.  Absence of intestinal bile promotes bacterial translocation. , 1992, The American surgeon.

[146]  J. Macfie,et al.  Translocation of enteric bacteri in humans , 1993 .

[147]  R. Parks,et al.  Intestinal barrier dysfunction in clinical and experimental obstructive jaundice and its reversal by internal biliary drainage , 1996, The British journal of surgery.

[148]  M. Dinauer,et al.  Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. , 1999, Immunity.

[149]  S. Gupta,et al.  Histomorphometric study of portal hypertensive enteropathy. , 1997, American journal of clinical pathology.

[150]  W. Jiménez,et al.  Nitric oxide production and inducible nitric oxide synthase expression in peritoneal macrophages of cirrhotic patients , 1999, Hepatology.

[151]  H. Scholz,et al.  Insulin-like growth factors decrease oxygen-regulated erythropoietin production by human hepatoma cells (Hep G2). , 1992, The American journal of physiology.

[152]  P. Kubes,et al.  Nitric oxide modulates epithelial permeability in the feline small intestine. , 1992, The American journal of physiology.

[153]  R. Berg,et al.  Immunosuppression and intestinal bacterial overgrowth synergistically promote bacterial translocation. , 1988, Archives of surgery.