An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems
暂无分享,去创建一个
[1] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[2] Peter Lancaster,et al. The theory of matrices , 1969 .
[3] P. Dooren. A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .
[4] Gene H. Golub,et al. Matrix computations , 1983 .
[5] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[6] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[7] R. C. Thompson,et al. Pencils of complex and real symmetric and skew matrices , 1991 .
[8] V. Mehrmann. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .
[9] Volker Mehrmann,et al. A Chart of Numerical Methods for Structured Eigenvalue Problems , 1992, SIAM J. Matrix Anal. Appl..
[10] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[11] V. Mehrmann,et al. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .
[12] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[13] Alan J. Laub,et al. A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case , 1998 .
[14] Luís Miguel Silveira,et al. Robust rational function approximation algorithm for model generation , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).
[15] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[16] Volker Mehrmann,et al. Numerical methods in control , 2000 .
[17] David S. Watkins,et al. Cholesky-like Factorizations of Skew-Symmetric Matrices , 2000 .
[18] Volker Mehrmann,et al. Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..
[19] David S. Watkins,et al. Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures , 2001 .
[20] David S. Watkins,et al. POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .
[21] G. W. Stewart,et al. Addendum to "A Krylov-Schur Algorithm for Large Eigenproblems" , 2002, SIAM J. Matrix Anal. Appl..
[22] Peter Benner,et al. Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..
[23] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[24] Wen-Wei Lin,et al. Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods , 2002, SIAM J. Sci. Comput..
[25] Danny C. Sorensen,et al. Passivity preserving model reduction via interpolation of spectral zeros , 2003, 2003 European Control Conference (ECC).
[26] Stefano Grivet-Talocia,et al. Passivity enforcement via perturbation of Hamiltonian matrices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.
[27] Roland W. Freund,et al. An extension of the positive real lemma to descriptor systems , 2004, Optim. Methods Softw..
[28] David S. Watkins,et al. On Hamiltonian and symplectic Lanczos processes , 2004 .
[29] Leiba Rodman,et al. Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence , 2005 .
[30] Leiba Rodman,et al. Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence , 2005, SIAM Rev..
[31] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.
[32] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[33] Volker Mehrmann,et al. A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC / SYMMETRIC , 2005 .
[34] Volker Mehrmann,et al. Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form , 2005 .
[35] Danny C. Sorensen,et al. Convergence of Polynomial Restart Krylov Methods for Eigenvalue Computations , 2005, SIAM Rev..
[36] Paul Van Dooren,et al. Model reduction of state space systems via an implicitly restarted Lanczos method , 1996, Numerical Algorithms.
[37] Daniel Kressner,et al. Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II , 2005, TOMS.
[38] Volker Mehrmann,et al. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..
[39] Michael Schmidt,et al. Systematic Discretization of Input/Output Maps and other Contributions to the Control of Distributed Parameter Systems , 2007 .
[40] Tatjana Stykel,et al. Passivation of LTI systems , 2007 .
[41] Peter Benner,et al. A robust numerical method for the γ-iteration in H∞ control , 2007 .
[42] Roland W. Freund,et al. Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling , 2007, Math. Program..
[43] Daniel Kressner,et al. Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.
[44] TATJANA STYKEL,et al. Passivity-preserving balanced truncation for electrical circuits , 2008 .
[45] Valeria Simoncini,et al. New conditions for non-stagnation of minimal residual methods , 2008, Numerische Mathematik.
[46] Roland W. Freund,et al. On Pade-type model order reduction of J-Hermitian linear dynamical systems ⋆ , 2008 .
[47] Volker Mehrmann,et al. The Modified Optimal Hinfinity Control Problem for Descriptor Systems , 2008, SIAM J. Control. Optim..
[48] V. Mehrmann,et al. THE MODIFIED OPTIMAL H∞ CONTROL PROBLEM FOR DESCRIPTOR SYSTEMS , 2009 .
[49] Timo Reis,et al. Positive real and bounded real balancing for model reduction of descriptor systems , 2010, Int. J. Control.
[50] Mi-Ching Tsai,et al. Robust and Optimal Control , 2014 .