An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems

[1]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[2]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[3]  P. Dooren A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[6]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[7]  R. C. Thompson,et al.  Pencils of complex and real symmetric and skew matrices , 1991 .

[8]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[9]  Volker Mehrmann,et al.  A Chart of Numerical Methods for Structured Eigenvalue Problems , 1992, SIAM J. Matrix Anal. Appl..

[10]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[11]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[12]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[13]  Alan J. Laub,et al.  A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case , 1998 .

[14]  Luís Miguel Silveira,et al.  Robust rational function approximation algorithm for model generation , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[15]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[16]  Volker Mehrmann,et al.  Numerical methods in control , 2000 .

[17]  David S. Watkins,et al.  Cholesky-like Factorizations of Skew-Symmetric Matrices , 2000 .

[18]  Volker Mehrmann,et al.  Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..

[19]  David S. Watkins,et al.  Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures , 2001 .

[20]  David S. Watkins,et al.  POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .

[21]  G. W. Stewart,et al.  Addendum to "A Krylov-Schur Algorithm for Large Eigenproblems" , 2002, SIAM J. Matrix Anal. Appl..

[22]  Peter Benner,et al.  Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..

[23]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[24]  Wen-Wei Lin,et al.  Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods , 2002, SIAM J. Sci. Comput..

[25]  Danny C. Sorensen,et al.  Passivity preserving model reduction via interpolation of spectral zeros , 2003, 2003 European Control Conference (ECC).

[26]  Stefano Grivet-Talocia,et al.  Passivity enforcement via perturbation of Hamiltonian matrices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Roland W. Freund,et al.  An extension of the positive real lemma to descriptor systems , 2004, Optim. Methods Softw..

[28]  David S. Watkins,et al.  On Hamiltonian and symplectic Lanczos processes , 2004 .

[29]  Leiba Rodman,et al.  Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence , 2005 .

[30]  Leiba Rodman,et al.  Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence , 2005, SIAM Rev..

[31]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[32]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[33]  Volker Mehrmann,et al.  A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC / SYMMETRIC , 2005 .

[34]  Volker Mehrmann,et al.  Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form , 2005 .

[35]  Danny C. Sorensen,et al.  Convergence of Polynomial Restart Krylov Methods for Eigenvalue Computations , 2005, SIAM Rev..

[36]  Paul Van Dooren,et al.  Model reduction of state space systems via an implicitly restarted Lanczos method , 1996, Numerical Algorithms.

[37]  Daniel Kressner,et al.  Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II , 2005, TOMS.

[38]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[39]  Michael Schmidt,et al.  Systematic Discretization of Input/Output Maps and other Contributions to the Control of Distributed Parameter Systems , 2007 .

[40]  Tatjana Stykel,et al.  Passivation of LTI systems , 2007 .

[41]  Peter Benner,et al.  A robust numerical method for the γ-iteration in H∞ control , 2007 .

[42]  Roland W. Freund,et al.  Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling , 2007, Math. Program..

[43]  Daniel Kressner,et al.  Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.

[44]  TATJANA STYKEL,et al.  Passivity-preserving balanced truncation for electrical circuits , 2008 .

[45]  Valeria Simoncini,et al.  New conditions for non-stagnation of minimal residual methods , 2008, Numerische Mathematik.

[46]  Roland W. Freund,et al.  On Pade-type model order reduction of J-Hermitian linear dynamical systems ⋆ , 2008 .

[47]  Volker Mehrmann,et al.  The Modified Optimal Hinfinity Control Problem for Descriptor Systems , 2008, SIAM J. Control. Optim..

[48]  V. Mehrmann,et al.  THE MODIFIED OPTIMAL H∞ CONTROL PROBLEM FOR DESCRIPTOR SYSTEMS , 2009 .

[49]  Timo Reis,et al.  Positive real and bounded real balancing for model reduction of descriptor systems , 2010, Int. J. Control.

[50]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .