Carbon nanotubes for sustainable energy applications.

The grand challenge of a sustainable production and use of energy has focused research on the nanostructure of materials. This aspect is considered of critical importance for improving the performance of advanced materials and electrodes to meet demanding expectations. Carbon nanotubes (CNTs) are the first and most-successful example of nanomaterials, and play a central role in the development of advanced solutions for sustainable energy applications. However, notwithstanding the rising scientific and technological interest in CNTs, their use is still largely based on phenomenological observations that miss the complexities of the nanostructure and characteristics of these materials. This Concept paper addresses the need for a rational design of CNTs for energy applications, based on an understanding of the key aspects to be considered for their optimization in different applications such as lithium ion batteries, supercapacitors, solar cells, and fuel cells.

[1]  T. Umeyama,et al.  Carbon nanotube-modified electrodes for solar energy conversion , 2008 .

[2]  Charles A Schmuttenmaer,et al.  Exciton-like trap states limit electron mobility in TiO2 nanotubes. , 2010, Nature nanotechnology.

[3]  M. Hasegawa,et al.  Energetics of lithium ion adsorption on defective carbon nanotubes , 2005 .

[4]  P. Alegaonkar,et al.  Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes , 2007 .

[5]  E. Toberer,et al.  Macroporous manganese oxides with regenerative mesopores. , 2006, Journal of the American Chemical Society.

[6]  I. Barsukov New carbon based materials for electrochemical energy storage systems : batteries, supercapacitors and fuel cells , 2006 .

[7]  J. A. Menéndez,et al.  On the nature of basic sites on carbon surfaces: an overview , 2004 .

[8]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[9]  D. Su,et al.  CNFs@CNTs: Superior Carbon for Electrochemical Energy Storage , 2008 .

[10]  L. Tapasztó,et al.  Atomically resolved STM images of carbon nanotube defects produced by Ar+ irradiation , 2005 .

[11]  Shu-Hua Chien,et al.  Application of TiO2 nanoparticles coated multi-wall carbon nanotube to dye-sensitized solar cells. , 2010, Journal of nanoscience and nanotechnology.

[12]  R. Schlögl The role of chemistry in the energy challenge. , 2010, ChemSusChem.

[13]  Marcus D. Lay,et al.  Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. , 2008, Analytica chimica acta.

[14]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[15]  W. Sigmund,et al.  Photocatalytic Carbon‐Nanotube–TiO2 Composites , 2009 .

[16]  M. Kondo,et al.  Hierarchically Organized Micro/Nano-Structures of TiO2 , 2009 .

[17]  D. Su,et al.  Analysis of the structure and chemical properties of some commercial carbon nanostructures , 2009 .

[18]  Junhong Chen,et al.  Enhancing Solar Cell Efficiencies through 1-D Nanostructures , 2008, Nanoscale Research Letters.

[19]  K. Okabe,et al.  Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™Buckytubes™) in propylene carbonate electrolytes , 2002 .

[20]  D. Tasis,et al.  Current progress on the chemical modification of carbon nanotubes. , 2010, Chemical reviews.

[21]  Bin Xu,et al.  Functional hybrid materials based on carbon nanotubes and metal oxides , 2010 .

[22]  T. Hasobe,et al.  Supramolecular nanoarchitectures for light energy conversion. , 2010, Physical chemistry chemical physics : PCCP.

[23]  A. Dillon,et al.  Carbon nanotubes for photoconversion and electrical energy storage. , 2010, Chemical reviews.

[24]  S. Wijewardane,et al.  Potential applicability of CNT and CNT/composites to implement ASEC concept: A review article , 2009 .

[25]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[26]  Siglinda Perathoner,et al.  The Role of Nanostructure in Improving the Performance of Electrodes for Energy Storage and Conversion , 2009 .

[27]  Shuhong Yu,et al.  A general approach for synthesis of a family of functional inorganic nanotubes using highly active carbonaceous nanofibres as templates , 2009 .

[28]  Ji Liang,et al.  Study of electrochemical capacitors utilizing carbon nanotube electrodes , 1999 .

[29]  Yuyan Shao,et al.  Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell , 2008 .

[30]  P. Serp,et al.  Catalysis in Carbon Nanotubes , 2010 .

[31]  F. Banhart Interactions between metals and carbon nanotubes: at the interface between old and new materials. , 2009, Nanoscale.

[32]  Richard M. Lueptow,et al.  Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. , 2008, Environmental science & technology.

[33]  Y. Ando Carbon nanotube: the inside story. , 2010, Journal of nanoscience and nanotechnology.

[34]  Hsisheng Teng,et al.  Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics , 2002 .

[35]  A. Kundu,et al.  Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode , 2010 .

[36]  Martin Pumera,et al.  The electrochemistry of carbon nanotubes: fundamentals and applications. , 2009, Chemistry.

[37]  D. Cazorla-Amorós,et al.  Enhanced capacitance of carbon nanotubes through chemical activation , 2002 .

[38]  Ho Chang,et al.  Dye-Sensitized Solar Cells Made with TiO2-Coated Multi-Wall Carbon Nanotubes and Natural Dyes Extracted from Ipomoea , 2009 .

[39]  D. Su,et al.  Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. , 2010, ChemSusChem.

[40]  Wei Xia,et al.  Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption , 2007 .

[41]  Siglinda Perathoner,et al.  Problems and perspectives in nanostructured carbon-based electrodes for clean and sustainable energy , 2010 .

[42]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[43]  Andrew Dicks,et al.  The role of carbon in fuel cells , 2006 .

[44]  Siglinda Perathoner,et al.  Catalysis: Role and Challenges for a Sustainable Energy , 2009 .

[45]  Viera Skakalova,et al.  Modelling conduction in carbon nanotube networks with different thickness, chemical treatment and irradiation , 2008 .

[46]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[47]  Anusorn Kongkanand,et al.  Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. , 2007, Nano letters.

[48]  Zhenguo Yang,et al.  Oriented nanostructures for energy conversion and storage. , 2008, ChemSusChem.

[49]  Ki Chul Park,et al.  Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors , 2007 .

[50]  F. Béguin,et al.  Supercapacitors based on conducting polymers/nanotubes composites , 2006 .

[51]  Hongda Du,et al.  High loading of Pt–Ru nanocatalysts by pentagon defects introduced in a bamboo-shaped carbon nanotube support for high performance anode of direct methanol fuel cells , 2009 .

[52]  Siglinda Perathoner,et al.  Electrocatalytic performances of nanostructured platinum–carbon materials , 2005 .

[53]  Hao Zhang,et al.  Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries , 2009 .

[54]  M. Dong,et al.  Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes , 2009 .

[55]  Tsutomu Miyasaka,et al.  Plastic and Solid-state Dye-sensitized Solar Cells Incorporating Single-wall Carbon Nanotubes , 2007 .

[56]  A. Harris,et al.  Synthesis, characterisation and applications of coiled carbon nanotubes. , 2010, Journal of nanoscience and nanotechnology.

[57]  G. Yushin,et al.  Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte , 2009 .

[58]  D. Eder Carbon nanotube-inorganic hybrids. , 2010, Chemical reviews.

[59]  Liangbing Hu,et al.  Carbon nanotube thin films: fabrication, properties, and applications. , 2010, Chemical reviews.

[60]  T. Kerdcharoen,et al.  First principles study of Li and Li+ adsorbed on carbon nanotube: Variation of tubule diameter and length , 2005 .

[61]  D. Su The use of natural materials in nanocarbon synthesis. , 2009, ChemSusChem.

[62]  S. Cho,et al.  Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. , 2008, Accounts of chemical research.

[63]  K. Geckeler,et al.  Carbon nanotube and gold-based materials: a symbiosis. , 2010, Chemistry.

[64]  H. Hatori,et al.  Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors , 2006 .

[65]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[66]  Douglas R. Kauffman,et al.  Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. , 2010, The Analyst.

[67]  G. Centi,et al.  Nanostructured electrocatalytic Pt-carbon materials for fuel cells and CO2 conversion , 2007 .

[68]  S. Tolbert,et al.  The Relationship Between Nanoscale Structure and Electrochemical Properties of Vanadium Oxide Nanorolls , 2004 .

[69]  R. Vittal,et al.  Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[70]  X. B. Zhang,et al.  Structure and Lithium Insertion Properties of Carbon Nanotubes , 1999 .

[71]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Frontmatter , 2009 .

[72]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[73]  F. Béguin,et al.  Nanotubular materials for supercapacitors , 2001 .

[74]  F. D’Souza,et al.  SWNT-Based Supramolecular Nanoarchitectures with Photosensitizing Donor and Acceptor Molecules , 2010 .

[75]  B. Conway,et al.  Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs , 2006 .

[76]  First-principles study of Li-intercalated carbon nanotube ropes , 1999, Physical review letters.

[77]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[78]  J. Bitter,et al.  Nanostructured carbons in catalysis a Janus material—industrial applicability and fundamental insights , 2010 .

[79]  Yueyuan Y. Xia,et al.  Diffusion and condensation of lithium atoms in single-walled carbon nanotubes , 2005 .

[80]  Prashant V. Kamat,et al.  Anchoring ZnO Particles on Functionalized Single Wall Carbon Nanotubes. Excited State Interactions and Charge Collection , 2007 .

[81]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[82]  P. Kamat,et al.  Single‐Walled Carbon Nanotube–CdS Nanocomposites as Light‐Harvesting Assemblies: Photoinduced Charge‐Transfer Interactions , 2005 .

[83]  De-hai Wu,et al.  Influence of the Surface Treatment on the Deposition of Platinum Nanoparticles on the Carbon Nanotubes , 2006 .

[84]  C. Pham‐Huu,et al.  The role of mechanically induced defects in carbon nanotubes to modify the properties of electrodes for PEM fuel cell , 2009 .

[85]  M. Saha,et al.  Nanotubes, Nanofibers and Nanowires as Supports for Catalysts , 2008 .

[86]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[87]  Z. Wen,et al.  Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon , 2006 .

[88]  Charles R. Martin,et al.  Nanostructured Electrodes and the Low‐Temperature Performance of Li‐Ion Batteries , 2005 .

[89]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[90]  David P. Wilkinson,et al.  Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis , 2006 .

[91]  F. Béguin,et al.  A Self‐Supporting Electrode for Supercapacitors Prepared by One‐Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends , 2005 .

[92]  Xianzhi Fu,et al.  New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange , 2010 .

[93]  Deyang Qu,et al.  Studies of the activated carbons used in double-layer supercapacitors , 2002 .

[94]  Prashant V. Kamat,et al.  Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells , 2008 .

[95]  Yong Wang,et al.  Novel catalyst support materials for PEM fuel cells : current status and future prospects , 2009 .

[96]  Jun Chen,et al.  Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells , 2010 .