Topological quadrangulations of closed triangulated surfaces using the Reeb graph

Although surfaces are more and more often represented by dense triangulations, it can be useful to convert them to B-spline surface patches, lying on quadrangles. This paper presents a method for the construction of coarse topological quadrangulations of closed triangulated surfaces, based on Morse theory. In order to construct on the surface a quadrangulation of its canonical polygonal schema, we compute first a Reeb graph then a canonical set of generators embedded on the surface. Some results are shown on different surfaces.

[1]  Silvia Biasotti,et al.  Extended Reeb Graphs for Surface Understanding and Description , 2000, DGCI.

[2]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[3]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1994, SCG '94.

[4]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[5]  Michael I. Jordan Graphical Models , 2003 .

[6]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[7]  Anne Verroust-Blondet,et al.  Level set diagrams of polyhedral objects , 1999, SMA '99.

[8]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[9]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[10]  J. Peters,et al.  C 1 -surface splines , 1995 .

[11]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[12]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[13]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[14]  Nora Hartsfield,et al.  Minimal quadrangulations of orientable surfaces , 1989, J. Comb. Theory, Ser. B.

[15]  Herbert Edelsbrunner,et al.  Auditory Morse Analysis of Triangulated Manifolds , 1997, VisMath.

[16]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[17]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1995, Discret. Comput. Geom..

[18]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[19]  L. Schumaker,et al.  Scattered Data Interpolation Using C 2 Supersplines of Degree Six , 1997 .

[20]  Tosiyasu L. Kunii,et al.  A feature-based approach for smooth surfaces , 1997, SMA '97.

[21]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[22]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[23]  Chee-Keng Yap,et al.  Computational complexity of combinatorial surfaces , 1990, SCG '90.

[24]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[25]  Tamal K. Dey,et al.  Computing homology groups of simplicial complexes in R3 , 1998, JACM.