Attenuated total reflection spectroscopy for infrared analysis of thin layers on a semiconductor substrate

A theoretical analysis based on a perturbation method is used to elucidate the results of attenuated total reflection (ATR) measurements performed on silicon oxide layers of different thicknesses on silicon substrates. This analysis shows that the absorbance ATR spectrum in p polarization is the image of the layer energy loss function, under specific conditions. It is pointed out that the enhanced sensitivity of ATR is controlled by the air gap thickness, the optical properties of the media involved, and the probing light polarization. An exact ATR spectrum simulation using a matrix formalism showed that straightforward interpretation in terms of the layer dielectric function is limited to a very narrow layer thickness range. The ATR spectrum fitting process is considered for layers out of this range and evaluated for the interpretation of experimental silicon oxide layer spectra.

[1]  N. Rochat,et al.  Multiple internal reflection infrared spectroscopy using two-prism coupling geometry: A convenient way for quantitative study of organic contamination on silicon wafers , 2000 .

[2]  Seiichi Miyazaki,et al.  Structure and electronic states of ultrathin SiO2 thermally grown on Si(100) and Si(111) surfaces , 1997 .

[3]  S. Miyazaki,et al.  Structural and Electrical Characterization of U Ltra-Thin SiO 2 Grown on Hydrogen-Terminated Silicon Surfaces , 1993 .

[4]  N. Rochat,et al.  Multiple internal reflection spectroscopy: a sensitive non-destructive probe for interfaces and nanometric layers , 2001 .

[5]  W. Bensch,et al.  An FT-IR study of silicon dioxides for VLSI microelectronics , 1990 .

[6]  F. Abelès Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés - Application aux couches minces , 1950 .

[7]  F. Shimura,et al.  Infrared reflection spectroscopy of the SiO2‐silicon interface , 1989 .

[8]  N. Harrick,et al.  Internal reflection spectroscopy , 1968 .

[9]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[10]  Yves J. Chabal,et al.  Surface infrared spectroscopy , 1988 .

[11]  J. W. Brault,et al.  Fourier Transform Spectroscopy , 1985 .

[12]  W. Theiß,et al.  Optical properties of porous silicon , 1997 .

[13]  V. Cosnier,et al.  HfO2–SiO2 interface in PVD coatings , 2001 .

[14]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[15]  C. Martinet,et al.  Analysis of the vibrational mode spectra of amorphous SiO2 films , 1995 .

[16]  P. Lange Evidence for disorder‐induced vibrational mode coupling in thin amorphous SiO2 films , 1989 .

[17]  Kirk Ct,et al.  Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. , 1988 .

[18]  Wilford N. Hansen,et al.  Electric Fields Produced by the Propagation of Plane Coherent Electromagnetic Radiation in a Stratified Medium , 1968 .