The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

[1]  Volker Knoop,et al.  Extreme RNA Editing in Coding Islands and Abundant Microsatellites in Repeat Sequences of Selaginella moellendorffii Mitochondria: The Root of Frequent Plant mtDNA Recombination in Early Tracheophytes , 2011, Genome biology and evolution.

[2]  Songnian Hu,et al.  The Bryopsis hypnoides Plastid Genome: Multimeric Forms and Complete Nucleotide Sequence , 2011, PloS one.

[3]  D. Smith,et al.  Correlation between Nuclear Plastid DNA Abundance and Plastid Number Supports the Limited Transfer Window Hypothesis , 2011, Genome biology and evolution.

[4]  D. Smith,et al.  Low nucleotide diversity for the expanded organelle and nuclear genomes of Volvox carteri supports the mutational-hazard hypothesis. , 2010, Molecular biology and evolution.

[5]  F. Leliaert,et al.  Evolution and cytological diversification of the green seaweeds (Ulvophyceae). , 2010, Molecular biology and evolution.

[6]  L. Tomáška,et al.  The mitochondrial genome of the pathogenic yeast Candida subhashii: GC-rich linear DNA with a protein covalently attached to the 5′ termini , 2010, Microbiology.

[7]  P. Keeling,et al.  The Mitochondrial Genome of the Entomoparasitic Green Alga Helicosporidium , 2010, PloS one.

[8]  T. Borza,et al.  MITOCHONDRIAL DNA IN THE OOGAMOCHLAMYS CLADE (CHLOROPHYCEAE): HIGH GC CONTENT AND UNIQUE GENOME ARCHITECTURE FOR GREEN ALGAE 1 , 2009, Journal of phycology.

[9]  D. Hodgson,et al.  Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia , 2009, Proceedings of the Royal Society B: Biological Sciences.

[10]  C. Lemieux,et al.  The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria reveal a shared ancestry between the Pedinomonadales and Chlorellales. , 2009, Molecular biology and evolution.

[11]  D. Smith Unparalleled GC content in the plastid DNA of Selaginella , 2009, Plant Molecular Biology.

[12]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..

[13]  Laurent Duret,et al.  Biased gene conversion and the evolution of mammalian genomic landscapes. , 2009, Annual review of genomics and human genetics.

[14]  J. Whelan,et al.  Protein transport in organelles: Dual targeting of proteins to mitochondria and chloroplasts , 2009, The FEBS journal.

[15]  H. Philippe,et al.  Improvement of molecular phylogenetic inference and the phylogeny of Bilateria , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  P. Hebert,et al.  Diagnosing Mitochondrial DNA Diversity: Applications of a Sentinel Gene Approach , 2008, Journal of Molecular Evolution.

[17]  D. Smith,et al.  Mitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content. , 2008, Molecular biology and evolution.

[18]  J. Brodie,et al.  Unravelling the algae: the past, present, and future of algal systematics , 2007 .

[19]  C. Lemieux,et al.  The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae , 2007, BMC Genomics.

[20]  A. J. Bendich The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[21]  B. Lang,et al.  Mitochondrial introns: a critical view. , 2007, Trends in genetics : TIG.

[22]  Shin Watanabe,et al.  Ultrastructure and phylogenetic relationships of the unicellular green algae Ignatius tetrasporus and Pseudocharacium americanum (Chlorophyta) , 2007 .

[23]  A. Konagaya,et al.  The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses , 2007, Journal of Plant Research.

[24]  A. Millar,et al.  Recent surprises in protein targeting to mitochondria and plastids. , 2006, Current opinion in plant biology.

[25]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[26]  C. Spencer,et al.  Human polymorphism around recombination hotspots. , 2006, Biochemical Society transactions.

[27]  P. Keeling,et al.  The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured , 2006, BMC biology.

[28]  R. Bock,et al.  Elimination of deleterious mutations in plastid genomes by gene conversion. , 2006, The Plant journal : for cell and molecular biology.

[29]  C. Lemieux,et al.  The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages. , 2005, Molecular biology and evolution.

[30]  U. Karsten,et al.  MYCOSPORINE‐LIKE AMINO ACIDS AND PHYLOGENIES IN GREEN ALGAE: PRASIOLA AND ITS RELATIVES FROM THE TREBOUXIOPHYCEAE (CHLOROPHYTA) 1 , 2005 .

[31]  H. Tachida,et al.  Compositional Properties of Green-Plant Plastid Genomes , 2005, Journal of Molecular Evolution.

[32]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[33]  R. McCourt,et al.  Green algae and the origin of land plants. , 2004, American journal of botany.

[34]  A. J. Bendich,et al.  Circular Chloroplast Chromosomes: The Grand Illusion , 2004, The Plant Cell Online.

[35]  C. Lemieux,et al.  The complete mitochondrial DNA sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) highlights distinctive evolutionary trends in the chlorophyta and suggests a sister-group relationship between the Ulvophyceae and Chlorophyceae. , 2004, Molecular biology and evolution.

[36]  G. Marais,et al.  Biased gene conversion: implications for genome and sex evolution. , 2003, Trends in genetics : TIG.

[37]  B. Lang,et al.  Parallels in Genome Evolution in Mitochondria and Bacterial Symbionts , 2003, IUBMB life.

[38]  A. Hall,et al.  Mismatch repair activity in mammalian mitochondria. , 2003, Nucleic acids research.

[39]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[40]  B F Lang,et al.  The Complete Mitochondrial DNA Sequences of Nephroselmis olivacea and Pedinomonas minor: Two Radically Different Evolutionary Patterns within Green Algae , 1999, Plant Cell.

[41]  Stefan Kurtz,et al.  REPuter: fast computation of maximal repeats in complete genomes , 1999, Bioinform..

[42]  J. Kroymann,et al.  The Mitochondrial Genome of Chlorogonium elongatum Inferred from the Complete Sequence , 1998, Journal of Molecular Evolution.

[43]  B F Lang,et al.  Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. Gene content and genome organization. , 1994, Journal of molecular biology.

[44]  Ø. Moestrup FURTHER STUDIES OF PRESUMEDLY PRIMITIVE GREEN ALGAE, INCLUDING THE DESCRIPTION OF PEDINOPHYCEAE CLASS. NOV. AND RESULTOR GEN. NOV. 1 , 1991 .

[45]  O. Holm‐Hansen Isolation and Culture of Terrestrial and Fresh-water Algae of Antarctica , 1964 .

[46]  K. Holsinger The Neutral Theory of Molecular Evolution. , 2012 .

[47]  C. O'kelly The Origin and Early Evolution of Green Plants , 2007 .

[48]  T. Pröschold,et al.  Systematics of the green algae: Conflict of classic and modern approaches , 2007 .

[49]  J. Olsen,et al.  Unravelling the algae: the past,present, and future of algal systematics , 2007 .

[50]  Paul G. Falkowski,et al.  Evolution of primary producers in the sea , 2007 .

[51]  N. Hamasaki,et al.  Maintenance of mitochondrial DNA integrity: repair and degradation , 2002, Current Genetics.

[52]  L. Rothschild Handbook of protoctista. The structure, cultivation, habitats and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi , 1990 .

[53]  K. R. Mattox Classification of the green algae: a concept based on comparative cytology , 1984 .

[54]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.