Projected Krylov Methods for Saddle-Point Systems
暂无分享,去创建一个
[1] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[2] Michael A. Saunders,et al. CG Versus MINRES: An Empirical Comparison , 2012 .
[3] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[4] Nicholas I. M. Gould,et al. Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[5] Dominique Orban,et al. Projected Krylov Methods for Unsymmetric Augmented Systems , 2008 .
[6] Zhi-Hao Cao. A Note on Constraint Preconditioning for Nonsymmetric Indefinite Matrices , 2002, SIAM J. Matrix Anal. Appl..
[7] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[8] Henk A. van der Vorst,et al. Transpose-free formulations of Lanczos-type methods for nonsymmetric linear systems , 2004, Numerical Algorithms.
[9] Jan Vlcek,et al. Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems , 1998, Numer. Linear Algebra Appl..
[10] A. Bruaset. A survey of preconditioned iterative methods , 1995 .
[11] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[12] Andrew J. Wathen,et al. Approximate Factorization Constraint Preconditioners for Saddle-Point Matrices , 2005, SIAM J. Sci. Comput..
[13] Andrew J. Wathen,et al. On choice of preconditioner for minimum residual methods for nonsymmetric matrices , 2011 .
[14] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[15] Valeria Simoncini,et al. Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..
[16] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[17] Ilaria Perugia,et al. Linear Algebra Methods in a Mixed Approximation of Magnetostatic Problems , 1999, SIAM J. Sci. Comput..
[18] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[19] Nicholas I. M. Gould,et al. Projected Krylov Methods for Saddle-Point Systems , 2013, SIAM J. Matrix Anal. Appl..
[20] Nicholas I. M. Gould,et al. A primal-dual trust-region algorithm for non-convex nonlinear programming , 2000, Math. Program..
[21] Dominique Orban,et al. The projected Golub-Kahan process for constrained linear least-squares problems , 2014 .
[22] Boris Polyak. The conjugate gradient method in extremal problems , 1969 .
[23] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[24] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[25] H. Simon,et al. Two Conjugate-Gradient-Type Methods for Unsymmetric Linear Equations , 1988 .
[26] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[27] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[28] Nicholas I. M. Gould,et al. On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem , 1985, Math. Program..
[29] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[30] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[31] Nicholas I. M. Gould,et al. On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..
[32] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[33] Michael A. Saunders,et al. LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..
[34] R. Chandra. Conjugate gradient methods for partial differential equations. , 1978 .
[35] Nicholas I. M. Gould,et al. Implicit-Factorization Preconditioning and Iterative Solvers for Regularized Saddle-Point Systems , 2006, SIAM J. Matrix Anal. Appl..
[36] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[37] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[38] Ilaria Perugia,et al. Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 2000, Numer. Linear Algebra Appl..
[39] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[40] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[41] Claude Brezinski,et al. Transpose-free Lanczos-type algorithms for nonsymmetric linear systems , 1998, Numerical Algorithms.