Nanomaterials for renewable energy production and storage.

Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.

[1]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[2]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[3]  P. Schmuki,et al.  Fast formation of aligned high-aspect ratio TiO2 nanotube bundles that lead to increased open circuit voltage when used in dye sensitized solar cells , 2011 .

[4]  C. Burda,et al.  Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles , 2004 .

[5]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[6]  A. Manthiram,et al.  Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium Ion Batteries , 2008 .

[7]  G. Lu,et al.  Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. , 2011, Chemical communications.

[8]  K. Domen,et al.  Effect of electrolyte addition on activity of (Ga1−xZnx)(N1−xOx) photocatalyst for overall water splitting under visible light , 2009 .

[9]  Javier Soria,et al.  Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions , 1991 .

[10]  Zhiliang Jin,et al.  Structural-dependent photoactivities of TiO(2) nanoribbon for visible-light-induced H(2) evolution: the roles of nanocavities and alternate structures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[11]  G. Pacchioni,et al.  Theory of Carbon Doping of Titanium Dioxide , 2005 .

[12]  Haoshen Zhou,et al.  Nanocrystalline Rutile TiO2 Electrode for High-Capacity and High-Rate Lithium Storage , 2007 .

[13]  Wenjun Zhang,et al.  Silicon nanowires for rechargeable lithium-ion battery anodes , 2008 .

[14]  M. Grätzel Dye-sensitized solar cells , 2003 .

[15]  D. Bahnemann,et al.  A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity , 2000 .

[16]  T. Xie,et al.  Research on the Effect of Different Sizes of ZnO Nanorods on the Efficiency of TiO2-Based Dye-Sensitized Solar Cells , 2007 .

[17]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[18]  G. Lu,et al.  Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. , 2010, Journal of the American Chemical Society.

[19]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[20]  Zhonghai Zhang,et al.  Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation , 2010 .

[21]  Jerzy Walendziewski,et al.  Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents , 2005 .

[22]  Arthur J. Nozik,et al.  Photoelectrochemistry: Applications to Solar Energy Conversion , 1978 .

[23]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[24]  Mario Schiavello,et al.  Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation , 1988 .

[25]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[26]  K. Domen,et al.  Crystal structure and optical properties of (Ga1−xZnx)(N1−xOx) oxynitride photocatalyst (x = 0.13) , 2005 .

[27]  Akihiko Kudo,et al.  Development of photocatalyst materials for water splitting , 2006 .

[28]  Julius M. Mwabora,et al.  Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering , 2003 .

[29]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[30]  Chenghua Sun,et al.  Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. , 2008, Angewandte Chemie.

[31]  Susan M. Kauzlarich,et al.  Promotion of Hydrogen Release from Ammonia Borane with Mechanically Activated Hexagonal Boron Nitride , 2009 .

[32]  Tao Wu,et al.  Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. , 2010, Journal of the American Chemical Society.

[33]  C. M. Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[34]  Eugeniu Balaur,et al.  Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes , 2005 .

[35]  Zhaoxiong Xie,et al.  Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. , 2009, Journal of the American Chemical Society.

[36]  K. Domen,et al.  The effects of starting materials in the synthesis of (Ga(1-x)Znx)(N(1-x)O(x)) solid solution on its photocatalytic activity for overall water splitting under visible light. , 2009, ChemSusChem.

[37]  Gang Chen,et al.  Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review , 2007 .

[38]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[39]  W. Ingler,et al.  Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting , 2007 .

[40]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[41]  R. Naik,et al.  Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide , 2008 .

[42]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[43]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[44]  Dong Young Kim,et al.  TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells , 2005 .

[45]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[46]  Jun Chen,et al.  UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. , 2006, The journal of physical chemistry. B.

[47]  C. Nicolini,et al.  New nanomaterials for light weight lithium batteries. , 2006, Analytica chimica acta.

[48]  Lin Xu,et al.  Single nanowire electrochemical devices. , 2010, Nano letters.

[49]  William H. Smyrl,et al.  Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes Electrochemical Properties , 2006 .

[50]  G. Amatucci,et al.  Bismuth Fluoride Nanocomposite as a Positive Electrode Material for Rechargeable Lithium Batteries , 2005 .

[51]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[52]  P. Ajayan,et al.  Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen. , 2011, ACS nano.

[53]  Wonyong Choi,et al.  EINFLUSSE VON DOTIERUNGS-METALL-IONEN AUF DIE PHOTOKATALYTISCHE REAKTIVITAT VON TIO2-QUANTENTEILCHEN , 1994 .

[54]  T. Chen,et al.  Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy , 2008 .

[55]  M. Anpo,et al.  Photocatalytic decomposition of liquid-water on the Pt-loaded TiO2 catalysts: Effects of the oxidation states of Pt species on the photocatalytic reactivity and the rate of the back reaction , 2000 .

[56]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[57]  K. Domen,et al.  Photocatalytic activities of TiO2 loaded with NiO , 1987 .

[58]  Nathan S. Lewis,et al.  Light work with water , 2001, Nature.

[59]  P. Schmuki,et al.  Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[60]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[61]  S. Martin,et al.  Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles , 1994 .

[62]  J. Carey,et al.  Intensity effects in the electrochemical photolysis of water at the TiO2 electrode , 1976, Nature.

[63]  M. Matsumura,et al.  Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder , 1983 .

[64]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[65]  Kazunari Domen,et al.  Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. , 2010, Journal of the American Chemical Society.

[66]  Lisa C. Klein,et al.  Electrochemistry of Cu3N with Lithium: A Complex System with Parallel Processes , 2003 .

[67]  T. He,et al.  Anatase TiO(2) single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis. , 2010, Chemical communications.

[68]  G. Cao,et al.  Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. , 2007, The journal of physical chemistry. B.

[69]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[70]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[71]  M. Woodhouse,et al.  Molecular semiconductors in organic photovoltaic cells. , 2010, Chemical reviews.

[72]  Hajime Haneda,et al.  Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde , 2005 .

[73]  Can Li,et al.  UV Raman Spectroscopic Study on TiO2. II. Effect of Nanoparticle Size on the Outer/Inner Phase Transformations , 2009 .

[74]  Nathan S. Lewis,et al.  Flexible Polymer‐Embedded Si Wire Arrays , 2009 .

[75]  M. S. Hegde,et al.  Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method , 2004 .

[76]  M. Graetzel,et al.  Electron paramagnetic resonance studies of doped titanium dioxide colloids , 1990 .

[77]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[78]  M. Laniecki,et al.  Photocatalytic hydrogen generation over lanthanides-doped titania , 2005 .

[79]  B. Ohtani,et al.  Decahedral Single-Crystalline Particles of Anatase Titanium(IV) Oxide with High Photocatalytic Activity , 2009 .

[80]  S. Cai,et al.  Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles , 1999 .

[81]  Masakazu Anpo,et al.  Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method , 2000 .

[82]  C. Grimes,et al.  Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells , 2006 .

[83]  Wilson A. Smith,et al.  Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. , 2009, Small.

[84]  Sun-Yuan Tsay,et al.  Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route , 2004 .

[85]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[86]  John J. Vajo,et al.  Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds , 2008 .

[87]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[88]  Yaping Zhou,et al.  Enhanced storage of hydrogen at the temperature of liquid nitrogen , 2004 .

[89]  K. Domen,et al.  Origin of Visible Light Absorption in GaN-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts , 2007 .

[90]  G. Pacchioni,et al.  Origin of the different photoactivity of N-doped anatase and rutile TiO2 , 2004 .

[91]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[92]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[93]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[94]  M. Yoshikawa,et al.  Fabrication and characterization of C-doped anatase TiO2 photocatalysts , 2004 .

[95]  James A. Anderson,et al.  Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts , 2000 .

[96]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[97]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[98]  J. Bockris,et al.  Stable photoelectrochemical cells for the splitting of water , 1977, Nature.

[99]  Joshua M. Spurgeon,et al.  Flexible, Polymer‐Supported, Si Wire Array Photoelectrodes , 2010, Advanced materials.

[100]  M. Anpo,et al.  Design and development of second-generation titanium oxide photocatalysts to better our environment—approaches in realizing the use of visible light , 2001 .

[101]  K. Domen,et al.  Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light , 2007 .

[102]  Lianzhou Wang,et al.  Titania-based photocatalysts—crystal growth, doping and heterostructuring , 2010 .

[103]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[104]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[105]  J. Tirado Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects , 2003 .

[106]  A. Załuska,et al.  Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage , 2001 .

[107]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[108]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[109]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .

[110]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[111]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[112]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[113]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[114]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[115]  Xenophon E. Verykios,et al.  Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , 1993 .

[116]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[117]  Tsuyoshi Takata,et al.  Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light , 2008 .

[118]  Hongjun Wu,et al.  High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes , 2011 .

[119]  Shinri Sato,et al.  Photolysis of water over metallized powdered titanium dioxide , 1985 .

[120]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[121]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[122]  Jimmy C. Yu,et al.  Biocompatible Anatase Single-Crystal Photocatalysts with Tunable Percentage of Reactive Facets , 2010 .

[123]  Hongjian Yan,et al.  Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation , 2010 .

[124]  Jimmy C. Yu,et al.  A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. , 2009, Chemical communications.

[125]  M. Jaroniec,et al.  Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets , 2010 .

[126]  Wei-Jun Zhang Structure and performance of LiFePO 4 cathode materials: A review , 2011 .

[127]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[128]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[129]  Dongsheng Xu,et al.  Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells , 2009 .

[130]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[131]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[132]  B. Hammer,et al.  The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania , 2008, Science.

[133]  L. Mädler,et al.  Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile , 2010 .

[134]  Jiefang Zhu,et al.  Nanostructured materials for photocatalytic hydrogen production , 2009 .

[135]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[136]  J. Giménez,et al.  A comparative study of CdS-based semiconductor photocatalysts for solar hydrogen production from sulphide + sulphite substrates , 1992 .

[137]  Annabella Selloni,et al.  Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[138]  M. Misra,et al.  A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water , 2007 .

[139]  K. Domen,et al.  Modification of (Zn1+xGe)(N2Ox) Solid Solution as a Visible Light Driven Photocatalyst for Overall Water Splitting , 2007 .

[140]  Liangliang Cao,et al.  Ordered TiO2 Nanotube Arrays on Transparent Conductive Oxide for Dye-Sensitized Solar Cells , 2010 .

[141]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[142]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[143]  P. Adelhelm,et al.  Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. , 2010, ChemSusChem.

[144]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[145]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[146]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[147]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[148]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[149]  Yuichi Ichihashi,et al.  The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method , 2001 .

[150]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[151]  K. Hashimoto,et al.  Design and Synthesis of TiO2 Nanorod Assemblies and Their Application for Photovoltaic Devices , 2006 .

[152]  P. Balaya Size effects and nanostructured materials for energy applications , 2008 .

[153]  Craig A Grimes,et al.  Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. , 2005, The journal of physical chemistry. B.

[154]  J. Tarascon,et al.  Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature , 2007 .

[155]  A. Paul Alivisatos,et al.  Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures , 2010 .

[156]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[157]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[158]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[159]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[160]  Gerbrand Ceder,et al.  Response to "unsupported claims of ultrafast charging of Li-ion batteries" , 2009 .

[161]  Sean C. Smith,et al.  Efficient Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Ti−O−B−N Structures , 2009 .

[162]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[163]  K. Domen,et al.  Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal , 2006 .

[164]  Vladimir M. Aroutiounian,et al.  Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting , 2005 .

[165]  K. Asai,et al.  Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies , 2003 .

[166]  Christian Masquelier,et al.  Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density , 2006 .

[167]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[168]  A. Dillon,et al.  Carbon nanotubes for photoconversion and electrical energy storage. , 2010, Chemical reviews.

[169]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. , 2003, Chemistry.

[170]  M. Misra,et al.  Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting , 2007 .

[171]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[172]  T. B. Marder,et al.  Will we soon be fueling our automobiles with ammonia-borane? , 2007, Angewandte Chemie.

[173]  Yoshihiro Nakato,et al.  A composite semiconductor photoanode for water electrolysis , 1982, Nature.

[174]  Chenghua Sun,et al.  Titania polymorphs derived from crystalline titanium diboride , 2009 .

[175]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[176]  Jin-Ri Choi,et al.  Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS , 2008 .

[177]  M. Payne,et al.  New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. , 2005, The journal of physical chemistry. B.

[178]  J. Zou,et al.  Fabrication of uniform anatase TiO(2) particles exposed by {001} facets. , 2010, Chemical communications.

[179]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[180]  R. Mokaya,et al.  Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. , 2007, Journal of the American Chemical Society.

[181]  Michael R. Hoffmann,et al.  Iron(III)-doped Q-sized TiO2 coatings in a fiber-optic cable photochemical reactor , 1997 .

[182]  U. V. Varadaraju,et al.  Crystallite Size Constraints on Lithium Insertion into Brookite TiO2 , 2008 .

[183]  Dynamics of light-induced water cleavage in colloidal systems , 1981 .

[184]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[185]  K. Domen,et al.  Roles of Rh/Cr2O3 (Core/Shell) Nanoparticles Photodeposited on Visible-Light-Responsive (Ga1-xZnx)(N1-xOx) Solid Solutions in Photocatalytic Overall Water Splitting , 2007 .

[186]  H. Arakawa,et al.  Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis , 1994 .

[187]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[188]  Kazuhiko Maeda,et al.  Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. , 2010, Journal of the American Chemical Society.

[189]  M. Anpo Utilization of TiO2 photocatalysts in green chemistry , 2000 .

[190]  T. Baumann,et al.  Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels , 2006 .

[191]  G. Lu,et al.  Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant {001} Facets , 2009 .

[192]  L. Nazar,et al.  Reversible lithium uptake by CoP3 at low potential: role of the anion , 2002 .

[193]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[194]  Bin Jiang,et al.  Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. , 2011, Nature materials.

[195]  Tsuyoshi Takata,et al.  Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine , 2004 .

[196]  Fang Fang,et al.  Hydrogen Storage Properties of Space-Confined NaAlH4 Nanoparticles in Ordered Mesoporous Silica , 2008 .

[197]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[198]  N. Ohashi,et al.  Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification , 2005 .

[199]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[200]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[201]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[202]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[203]  Jean François Dr. Reber,et al.  Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide , 1986 .

[204]  M. Fichtner Nanotechnological Aspects in Materials for Hydrogen Storage , 2005 .

[205]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[206]  Arumugam Manthiram,et al.  Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries , 2008 .

[207]  Chih-Wei Liu,et al.  Effect of Pt Loading Order on Photocatalytic Activity of Pt/TiO2 Nanofiber in Generation of H2 from Neat Ethanol , 2009 .

[208]  D. Ginley,et al.  Low-cost inorganic solar cells: from ink to printed device. , 2010, Chemical reviews.

[209]  K. Domen,et al.  Experimental visualization of covalent bonds and structural disorder in a gallium zinc oxynitride photocatalyst (Ga(1-x)Znx)(N(1-x)Ox): origin of visible light absorption. , 2010, Chemical communications.

[210]  G. Lu,et al.  TiO2 films with oriented anatase {001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes , 2011 .

[211]  J. Herrmann,et al.  Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2 , 1989 .

[212]  J. Zhang,et al.  Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting , 2011 .

[213]  K. Domen,et al.  Metal ion and N co-doped TiO_2 as a visible-light photocatalyst , 2004 .

[214]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[215]  Toshinori Mori,et al.  Preparation of visible-light-responsive TiO2-xNx photocatalyst by a sol-gel method: analysis of the active center on TiO2 that reacts with NH3. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[216]  B. D. Kay,et al.  Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. , 2005, Angewandte Chemie.

[217]  Bruce A. Parkinson,et al.  Recent developments in solar water-splitting photocatalysis , 2011 .

[218]  Hongjian Yan,et al.  Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst , 2009 .

[219]  J. Jang,et al.  Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production , 2007 .

[220]  Jun Chen,et al.  Combination of lightweight elements and nanostructured materials for batteries. , 2009, Accounts of chemical research.

[221]  K. Domen,et al.  Highly Ordered Pt-loaded CdS Nanowire Arrays for Photocatalytic Hydrogen Production under Visible Light , 2006 .

[222]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[223]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[224]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[225]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[226]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[227]  M. Graetzel,et al.  Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles , 1982 .

[228]  Mildred Dresselhaus Overview of the Hydrogen Initiative , 2006 .

[229]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[230]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[231]  Mietek Jaroniec,et al.  Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. , 2010, Journal of the American Chemical Society.

[232]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[233]  Masayuki Kanehara,et al.  Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. , 2010, Angewandte Chemie.

[234]  M Stanley Whittingham,et al.  Inorganic nanomaterials for batteries. , 2008, Dalton transactions.

[235]  Xiaobo Chen,et al.  Selected nanotechnologies for renewable energy applications , 2007 .

[236]  Xiaomin Li,et al.  A facile route to aligned TiO2 nanotube arrays on transparent conducting oxide substrates for dye-sensitized solar cells , 2011 .

[237]  Zheng‐Hong Luo,et al.  Decrease in the photoactivity of TiO2 pigment on doping with transition metals , 1992 .

[238]  D. Doren,et al.  Band gap tailoring of Nd3+-doped TiO2 nanoparticles , 2003 .

[239]  Sean C. Smith,et al.  Band-to-Band Visible-Light Photon Excitation and Photoactivity Induced by Homogeneous Nitrogen Doping in Layered Titanates , 2009 .

[240]  Jianwei Shi,et al.  Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride , 2006 .

[241]  S. Cai,et al.  The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode , 1999 .

[242]  K. Domen,et al.  Facile Cd−Thiourea Complex Thermolysis Synthesis of Phase-Controlled CdS Nanocrystals for Photocatalytic Hydrogen Production under Visible Light , 2007 .

[243]  D. Klug,et al.  Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. , 2008, Journal of the American Chemical Society.

[244]  Ping He,et al.  Olivine LiFePO4: development and future , 2011 .

[245]  Claes-Göran Granqvist,et al.  Photoelectrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte , 2004 .

[246]  M. Matsumura,et al.  Cadmium sulfide photocatalyzed hydrogen production from aqueous solutions of sulfite: effect of crystal structure and preparation method of the catalyst , 1985 .

[247]  Pier Paolo Prosini,et al.  Long-term cyclability of nanostructured LiFePO4 , 2003 .

[248]  G. Somorjai,et al.  Photocatalytic hydrogen production from water on Pt-free SrTiO3 in alkali hydroxide solutions , 1980, Nature.

[249]  Hyman D. Gesser,et al.  Porous titania glass as a photocatalyst for hydrogen production from water , 1981, Nature.

[250]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[251]  Yali Wang,et al.  Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO2 nanorod photoanode , 2009 .

[252]  Zhaoyang Fan,et al.  A Method for Fabrication of Pyramid-Shaped TiO2 Nanoparticles with a High {001} Facet Percentage , 2009 .

[253]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[254]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[255]  Z. Wu,et al.  Improved hydrogen storage properties of LiBH4 destabilized by carbon , 2007 .

[256]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[257]  Kenji Toda,et al.  Overall water splitting on (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. , 2005, The journal of physical chemistry. B.

[258]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[259]  Kai Wu,et al.  A cylindrical core-shell-like TiO2 nanotube array anode for flexible fiber-type dye-sensitized solar cells , 2011, Nanoscale research letters.

[260]  A. Nozik,et al.  Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.

[261]  Seeram Ramakrishna,et al.  Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell , 2007 .

[262]  J. Bitter,et al.  Sodium alanate nanoparticles--linking size to hydrogen storage properties. , 2008, Journal of the American Chemical Society.

[263]  Sean C. Smith,et al.  Sulfur doped anatase TiO2 single crystals with a high percentage of {0 0 1} facets. , 2010, Journal of colloid and interface science.

[264]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[265]  M. Graetzel,et al.  Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light , 1981 .

[266]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[267]  Akihiko Kudo,et al.  Recent progress in the development of visible light-driven powdered photocatalysts for water splitting , 2007 .

[268]  Dong Young Kim,et al.  Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanorod Photoelectrodes , 2009 .

[269]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[270]  H. Arakawa,et al.  Effect of carbonate salt addition on the photocatalyticdecomposition of liquid water over Pt–TiO2catalyst , 1997 .

[271]  James L. Gole,et al.  Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder , 2005 .

[272]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[273]  Michael Grätzel,et al.  Photochemical cleavage of water by photocatalysis , 1981, Nature.

[274]  Andrey L. Rogach,et al.  Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation , 2010 .

[275]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[276]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[277]  D. Gamelin,et al.  Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals. , 2004, Journal of the American Chemical Society.

[278]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[279]  Zhigang Chen,et al.  Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. , 2006, The journal of physical chemistry. B.

[280]  Craig A. Grimes,et al.  Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells : A review with examples using titania nanotube array photoanodes , 2008 .

[281]  A. Züttel,et al.  Recent Progress in Metal Borohydrides for Hydrogen Storage , 2011 .

[282]  H. Yamashita,et al.  Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. , 1999, Journal of synchrotron radiation.

[283]  M. Jiang,et al.  Highly efficient photocatalyst: TiO(2) microspheres produced from TiO(2) nanosheets with a high percentage of reactive {001} facets. , 2009, Chemistry.

[284]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[285]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[286]  S. Yoshikawa,et al.  A facile route to TiO2 nanotube arrays for dye-sensitized solar cells , 2009 .

[287]  Yuexiang Li,et al.  Synthesis of CdS Nanorods by an Ethylenediamine Assisted Hydrothermal Method for Photocatalytic Hydrogen Evolution , 2009 .

[288]  K. Domen,et al.  Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light , 2008 .

[289]  Sean C. Smith,et al.  Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. , 2010, Chemical communications.

[290]  Xueping Gao,et al.  Structure Transformation and Photoelectrochemical Properties of TiO2 Nanomaterials Calcined from Titanate Nanotubes , 2009 .

[291]  Patrik Schmuki,et al.  TiO2 nanotubes and their application in dye-sensitized solar cells. , 2010, Nanoscale.

[292]  K. Tabata,et al.  Stoichiometric photocatalytic decomposition of pure water in Pt/TiO2 aqueous suspension system , 1995 .

[293]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[294]  Tae‐Woo Lee,et al.  Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. , 2008, Chemical communications.

[295]  Hajime Haneda,et al.  Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies , 2005 .

[296]  J. Bitter,et al.  Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. , 2006, Angewandte Chemie.

[297]  Fumin Wang,et al.  Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. , 2006, The journal of physical chemistry. B.

[298]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[299]  Tao Zhang,et al.  LiBH4LiBH4 nanoparticles supported by disordered mesoporous carbon: Hydrogen storage performances and destabilization mechanisms , 2007 .

[300]  K. Domen,et al.  Preparation of (Ga1−xZnx) (N1−xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light , 2007 .

[301]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[302]  Xiaomin Li,et al.  Toward Hierarchical TiO2 Nanotube Arrays for Efficient Dye‐Sensitized Solar Cells , 2011, Advanced materials.

[303]  Shinji Fujimoto,et al.  On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si , 2006 .

[304]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[305]  G. Lu,et al.  Achieving maximum photo-oxidation reactivity of Cs(0.68)Ti(1.83)O(4-x)N(x) photocatalysts through valence band fine-tuning , 2011 .

[306]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[307]  N. Serpone,et al.  Efficient photochemical conversion of aqueous sulphides and sulphites to hydrogen using a rhodium-loaded CdS photocatalyst , 1986 .

[308]  Michael Grätzel,et al.  High-performance, nano-structured LiMnPO4 synthesized via a polyol method , 2009 .

[309]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[310]  Chong Seung Yoon,et al.  Synthesis of Nanowire and Hollow LiFePO4 Cathodes for High-Performance Lithium Batteries , 2008 .

[311]  Ladislav Kavan,et al.  Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. , 2005, Nano letters.

[312]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[313]  G. Lu,et al.  Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. , 2009, Journal of the American Chemical Society.

[314]  Karim Zaghib,et al.  Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries , 2009 .

[315]  Guozhong Cao,et al.  Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes , 2010 .

[316]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[317]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.