Insights into Pinacol Rearrangement: Oxidative versus Acid‐Catalyzed Mechanism

[1]  A. Antonchick,et al.  Reactive nitrogen species: Nitrosonium ions in organic synthesis , 2019, Tetrahedron.

[2]  Chunlei Wu,et al.  Chemoselectivity of Pinacol Rearrangement Originate by Different Hexafluoroantimonate Oxidant , 2018, Zeitschrift für anorganische und allgemeine Chemie.

[3]  Cosimo Annese,et al.  Heterolytic (2 e) vs Homolytic (1 e) Oxidation Reactivity: N-H versus C-H Switch in the Oxidation of Lactams by Dioxirans. , 2017, Chemistry.

[4]  S. Angelova,et al.  Fast intramolecular proton transfer in 2-(hydroxyaminomethylidene)-indan-1,3-dione , 2005 .

[5]  F. Ciminale Direct evidence on nucleophilic reactivity of secondary anilines toward an aminium radical. , 2001, The Journal of organic chemistry.

[6]  G Ciardo,et al.  Oxidative activation in aromatic substitutions. Reactions Of N, N-dimethylanilines with secondary anilines promoted by thallium triacetate , 1999, The Journal of organic chemistry.

[7]  G. Farinola,et al.  Aminium salt induced cyclodimerization of stilbenes in 1,1,1,3,3,3-hexafluoropropan-2-ol , 1999 .

[8]  J. Penn,et al.  Geometric requirements in the ferriin oxidation of benzylic 1,2-diols , 1999 .

[9]  B. Långström,et al.  ACID CATALYSIS VS. ELECTRON-TRANSFER CATALYSIS VIA ORGANIC CATIONS OR CATION-RADICALS AS THE REACTIVE INTERMEDIATE. ARE THESE DISTINCTIVE MECHANISMS ? , 1998 .

[10]  H. Shine,et al.  Reactions of Pinacols with One-Electron Oxidants. , 1996, The Journal of organic chemistry.

[11]  G. Mele,et al.  Pinacol–pinacolone rearrangement induced by aminium salts , 1994 .

[12]  J. D. Sanabia,et al.  Radical cation catalyzed pinacol-pinacolone rearrangement , 1993 .

[13]  J. Penn,et al.  Electron-transfer rate determinations: facile electron transfer from 1,1,2,2-tetrakis(4-methoxyphenyl)ethanediol , 1993 .

[14]  S. Sankararaman,et al.  Photoinduced electron transfer in pinacol cleavage with quinones via highly labile cation radicals. Direct comparison of charge-transfer excitation and photosensitization , 1993 .

[15]  J. Narvaez,et al.  Mesolytic Cleavage of CC Bonds. Comparison with Homolytic and Heterolytic Processes in the Same Substrate , 1990 .

[16]  S. Sankararaman,et al.  Efficient charge-transfer photochemistry via fragmentable cation radicals with variable lifetimes. Direct comparison with chloranil sensitization , 1989 .

[17]  P. Giacomello,et al.  Stereochemical effects in the gas-phase pinacol rearrangement. 2. Ring contraction versus methyl migration in cis- and trans-1,2-dimethylcyclohexane-1,2-diol , 1988 .

[18]  J. Penn,et al.  Pinacol cleavage using iron(III)trisphenanthroline complexes , 1988 .

[19]  L. Troisi,et al.  On the ESR identification of paramagnetic species observed during set oxidation of N,N-dimethyl-p-anisidine , 1988 .

[20]  G. de Petris,et al.  Stereochemical effects in the gas-phase pinacol rearrangement of cis- and trans-1,2-dimethylcyclopentane-1,2-diol. , 1986, Journal of the American Chemical Society.

[21]  M. Mella,et al.  The photochemical reaction of 1,4-naphthalenedicarbonitrile with aromatic pinacols and pinacol ethers , 1986 .

[22]  M. Gross,et al.  Mass spectrometry for investigations of gas-phase radical cation chemistry : The two step cycloaddition of the benzene radical cation and 1,3-butadiene , 1986 .

[23]  Fredric M. Menger,et al.  On the source of intramolecular and enzymatic reactivity , 1985 .

[24]  E. Steckhan,et al.  Indirect Electrochemical Regeneration of NADH by a Bipyridinerhodium(I) Complex as Electron‐Transfer Agent , 1982 .