Stream-temporal Querying with Ontologies

Recent years have seen theoretical and practical efforts on temporalizing and streamifying ontology-based data access (OBDA). This paper contributes to the practical efforts with a description/evaluation of a prototype implementation for the stream-temporal query language framework STARQL. STARQL serves the needs for industrially motivated scenarios, providing the same interface for querying historical data (reactive diagnostics) and for querying streamed data (continuous monitoring, predictive analytics). We show how to transform STARQL queries w.r.t. mappings into standard SQL queries, the difference between historical and continuous querying relying only in the use of a static window table vs. an incrementally updated window table. Experiments with a STARQL prototype engine using the PostgreSQL DBMS show the implementability and feasibility of our approach.

[1]  Ralf Möller,et al.  A Stream-Temporal Query Language for Ontology Based Data Access , 2014, Description Logics.

[2]  Stefan Borgwardt,et al.  Temporal Query Answering in the Description Logic DL-Lite , 2013, FroCos.

[3]  Sebastian Rudolph,et al.  Stream reasoning and complex event processing in ETALIS , 2012, Semantic Web.

[4]  Ralf Möller,et al.  Ontology Based Data Access on Temporal and Streaming Data , 2014, Reasoning Web.

[5]  Yannis E. Ioannidis,et al.  Dataflow Processing and Optimization on Grid and Cloud Infrastructures , 2009, IEEE Data Eng. Bull..

[6]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.

[7]  John Grant,et al.  Logic-based approach to semantic query optimization , 1990, TODS.

[8]  Evgeny Kharlamov,et al.  How Semantic Technologies Can Enhance Data Access at Siemens Energy , 2014, SEMWEB.

[9]  Diego Calvanese,et al.  Ontologies and Databases: The DL-Lite Approach , 2009, Reasoning Web.

[10]  Alessandro Campi,et al.  A First Step Towards Stream Reasoning , 2009, FIS.

[11]  Carsten Lutz,et al.  Conjunctive Query Answering in the Description Logic EL Using a Relational Database System , 2009, IJCAI.

[12]  Danh Le Phuoc,et al.  A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data , 2011, SEMWEB.

[13]  Karl Aberer,et al.  Enabling Query Technologies for the Semantic Sensor Web , 2012, Int. J. Semantic Web Inf. Syst..

[14]  Carsten Lutz,et al.  The Combined Approach to Ontology-Based Data Access , 2011, IJCAI.

[15]  John Grant,et al.  Foundations of Semantic Query Optimization for Deductive Databases , 1988, Foundations of Deductive Databases and Logic Programming..

[16]  Project Acronym : Optique Project Title : Scalable End-user Access to Big Data Instrument : Integrated Project Scheme : Information & Communication Technologies Deliverable D 5 . 1 A Semantics for Temporal and Stream-Based Query Answering in an OBDA Context , 2013 .

[17]  Carsten Lutz,et al.  Conjunctive Query Answering in EL using a Database System , 2008, OWLED.

[18]  Ying Xing,et al.  A Cooperative, Self-Configuring High-Availability Solution for Stream Processing , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[19]  Frank Wolter,et al.  Temporal Description Logic for Ontology-Based Data Access , 2013, IJCAI.

[20]  Frederick Reiss,et al.  TelegraphCQ: Continuous Dataflow Processing for an Uncertain World , 2003, CIDR.

[21]  Alessandro Margara,et al.  TESLA: a formally defined event specification language , 2010, DEBS '10.

[22]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[23]  Ian Horrocks,et al.  Reasoning Web. Reasoning on the Web in the Big Data Era , 2014, Lecture Notes in Computer Science.

[24]  JÜRGEN KRÄMER,et al.  Semantics and implementation of continuous sliding window queries over data streams , 2009, TODS.