Evolution of the neocortex: Perspective from developmental biology

[1]  P. Goldman-Rakic Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory , 2011 .

[2]  Pasko Rakic,et al.  Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling , 2009, Nature.

[3]  Edward G Jones,et al.  The origins of cortical interneurons: mouse versus monkey and human. , 2009, Cerebral cortex.

[4]  Y. Kawasawa,et al.  Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. , 2009, Cerebral cortex.

[5]  D. Geschwind,et al.  Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis , 2009, Neuron.

[6]  P. Rakic,et al.  Decision by division: making cortical maps , 2009, Trends in Neurosciences.

[7]  S. Shi,et al.  Specific synapses develop preferentially among sister excitatory neurons in the neocortex , 2009, Nature.

[8]  B. Berger,et al.  Origins of Cortical GABAergic Neurons in the Cynomolgus Monkey , 2008, Cerebral cortex.

[9]  L. Senelick It (review) , 2008 .

[10]  D. Geschwind,et al.  A functional genetic link between distinct developmental language disorders. , 2008, The New England journal of medicine.

[11]  V. Lefebvre,et al.  SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons , 2008, Proceedings of the National Academy of Sciences.

[12]  I. Kostović,et al.  Distinct origin of GABA-ergic neurons in forebrain of man, nonhuman primates and lower mammals. , 2008, Collegium antropologicum.

[13]  G. Fishell,et al.  Cerebral Cortex doi:10.1093/cercor/bhm258 Gene Expression in Cortical Interneuron Precursors is Prescient of their Mature Function , 2008 .

[14]  A. Visel,et al.  Response to Comment on "Human-Specific Gain of Function in a Developmental Enhancer" , 2009, Science.

[15]  J. Arellano,et al.  Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling , 2008, Proceedings of the National Academy of Sciences.

[16]  J. Kaas,et al.  The basic nonuniformity of the cerebral cortex , 2008, Proceedings of the National Academy of Sciences.

[17]  P. Rakic Confusing cortical columns , 2008, Proceedings of the National Academy of Sciences.

[18]  I. Cobos,et al.  FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development , 2008, Neural Development.

[19]  S. Carroll Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution , 2008, Cell.

[20]  J. Rubenstein,et al.  Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2 , 2008, The Journal of comparative neurology.

[21]  Srdjan D. Antic,et al.  Radial Glia Cells in the Developing Human Brain , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[22]  Colin Blakemore,et al.  Development of the human cerebral cortex: Boulder Committee revisited , 2008, Nature Reviews Neuroscience.

[23]  Tanya M. Teslovich,et al.  A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. , 2008, American journal of human genetics.

[24]  Katarzyna Chawarska,et al.  Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. , 2008, American journal of human genetics.

[25]  J. Sebat,et al.  Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. , 2008, American journal of human genetics.

[26]  D. Geschwind,et al.  Genome-wide analyses of human perisylvian cerebral cortical patterning , 2007, Proceedings of the National Academy of Sciences.

[27]  E. Grove,et al.  Patterning the Dorsal Telencephalon: A Role for Sonic Hedgehog? , 2007, The Journal of Neuroscience.

[28]  Shen-Ju Chou,et al.  COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas , 2007, Nature Neuroscience.

[29]  Pasko Rakic,et al.  The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering , 2007, Brain Research Reviews.

[30]  D. Geschwind,et al.  Genetic analysis of anterior posterior expression gradients in the developing mammalian forebrain. , 2007, Cerebral cortex.

[31]  P. Gruss,et al.  Novel genes differentially expressed in cortical regions during late neurogenesis , 2007, The European journal of neuroscience.

[32]  Henry Kennedy,et al.  Cell-cycle control and cortical development , 2007, Nature Reviews Neuroscience.

[33]  Juan Carlos Izpisua Belmonte,et al.  Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning , 2007, Neural Development.

[34]  J. Rubenstein,et al.  Patterning of frontal cortex subdivisions by Fgf17 , 2007, Proceedings of the National Academy of Sciences.

[35]  P. Boutros,et al.  Microarray analysis of the developing cortex. , 2006, Journal of neurobiology.

[36]  S. Horvath,et al.  Conservation and evolution of gene coexpression networks in human and chimpanzee brains , 2006, Proceedings of the National Academy of Sciences.

[37]  K. Davis,et al.  The human homolog of the QKI gene affected in the severe dysmyelination "quaking" mouse phenotype: downregulated in multiple brain regions in schizophrenia. , 2006, The American journal of psychiatry.

[38]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[39]  M. Webster,et al.  Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes , 2006, Molecular Psychiatry.

[40]  D. O'Leary,et al.  Cortical ventricular zone progenitors and their progeny maintain spatial relationships and radial patterning during preplate development indicating an early protomap. , 2006, Cerebral cortex.

[41]  Henry Kennedy,et al.  The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. , 2006, Cerebral cortex.

[42]  C. Blakemore,et al.  The first neurons of the human cerebral cortex , 2006, Nature Neuroscience.

[43]  Salvador Martinez,et al.  Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers , 2006, Development.

[44]  P. Hevezi,et al.  Gene expression analyses reveal molecular relationships among 20 regions of the human CNS , 2006, Neurogenetics.

[45]  Anastassia Stoykova,et al.  Gene networks controlling early cerebral cortex arealization , 2006, The European journal of neuroscience.

[46]  H. Kennedy,et al.  Comparative aspects of cerebral cortical development , 2006, The European journal of neuroscience.

[47]  P. Rakic,et al.  Molecular and Morphological Heterogeneity of Neural Precursors in the Mouse Neocortical Proliferative Zones , 2006, The Journal of Neuroscience.

[48]  Ingo Ruczinski,et al.  Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart , 2005, Genome Biology.

[49]  N. Šestan,et al.  Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Mcconnell,et al.  Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[52]  N. Zečević,et al.  Contributions of cortical subventricular zone to the development of the human cerebral cortex , 2005, The Journal of comparative neurology.

[53]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[54]  T Tarui,et al.  Overexpression of p27 Kip 1, probability of cell cycle exit, and laminar destination of neocortical neurons. , 2005, Cerebral cortex.

[55]  P. Rakic Less is more: progenitor death and cortical size , 2005, Nature Neuroscience.

[56]  J. Kaas,et al.  The evolution of the neocortex in mammals: how is phenotypic diversity generated? , 2005, Current Opinion in Neurobiology.

[57]  Matthew A. Zapala,et al.  Adult mouse brain gene expression patterns bear an embryologic imprint. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Carroll,et al.  Evolution at Two Levels: On Genes and Form , 2005, PLoS biology.

[59]  D. Geschwind,et al.  Early Asymmetry of Gene Transcription in Embryonic Human Left and Right Cerebral Cortex , 2005, Science.

[60]  P. Levitt Developmental Neurobiology and Clinical Disorders: Lost in Translation? , 2005, Neuron.

[61]  P. Rakic,et al.  Principles of neural cell migration , 1990, Experientia.

[62]  G. Striedter Principles of brain evolution. , 2005 .

[63]  Pavel A Pevzner,et al.  Mammalian phylogenomics comes of age. , 2004, Trends in genetics : TIG.

[64]  N. Zečević Specific characteristic of radial glia in the human fetal telencephalon , 2004, Glia.

[65]  Arnold R Kriegstein,et al.  Patterns of neuronal migration in the embryonic cortex , 2004, Trends in Neurosciences.

[66]  Pasko Rakic,et al.  A golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes , 1979, Anatomy and Embryology.

[67]  J. Graves The descent of man , 2004, Nature.

[68]  P. Rakić,et al.  Telencephalic origin of pulvinar neurons in the fetal human brain , 2004, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[69]  E. G. Jones,et al.  Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities , 2004, Experimental Brain Research.

[70]  N. Zečević,et al.  Emerging complexity of layer I in human cerebral cortex. , 2003, Cerebral cortex.

[71]  Pasko Rakic,et al.  Elusive radial glial cells: Historical and evolutionary perspective , 2003, Glia.

[72]  C. Walsh,et al.  Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. , 2003, Cerebral cortex.

[73]  J. Rubenstein,et al.  Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants , 2003, Development.

[74]  G. Fishell,et al.  Neurons from radial glia: the consequences of asymmetric inheritance , 2003, Current Opinion in Neurobiology.

[75]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[76]  P. Rakic,et al.  Origin of GABAergic neurons in the human neocortex , 2002, Nature.

[77]  P. Rakic Pre- and post-developmental neurogenesis in primates , 2002, Clinical Neuroscience Research.

[78]  F. Aboitiz,et al.  An hypothesis on the early evolution of the development of the isocortex , 2002, Brain Research Bulletin.

[79]  David A Lewis,et al.  Schizophrenia as a disorder of neurodevelopment. , 2002, Annual review of neuroscience.

[80]  Javier DeFelipe,et al.  Cortical interneurons: from Cajal to 2001. , 2002, Progress in brain research.

[81]  Y. Ohkubo,et al.  Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles , 2001, Neuroscience.

[82]  Pasko Rakic Neurocreationism--Making New Cortical Maps , 2001, Science.

[83]  O. Marín,et al.  A long, remarkable journey: Tangential migration in the telencephalon , 2001, Nature Reviews Neuroscience.

[84]  E. Grove,et al.  Neocortex Patterning by the Secreted Signaling Molecule FGF8 , 2001, Science.

[85]  Pasko Rakic,et al.  Telencephalic origin of human thalamic GABAergic neurons , 2001, Nature Neuroscience.

[86]  P. Rakić,et al.  Development of Layer I Neurons in the Primate Cerebral Cortex , 2001, The Journal of Neuroscience.

[87]  T. Weissman,et al.  Neurons derived from radial glial cells establish radial units in neocortex , 2001, Nature.

[88]  S. Anderson,et al.  Distinct cortical migrations from the medial and lateral ganglionic eminences. , 2001, Development.

[89]  Pat Levitt,et al.  Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex , 2000, Neuron.

[90]  C. Walsh,et al.  Neuronal migration disorders: from genetic diseases to developmental mechanisms , 2000, Trends in Neurosciences.

[91]  D. O'Leary,et al.  Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. , 2000, Science.

[92]  P. Rakic,et al.  Mouse Brain Development , 2000, Results and Problems in Cell Differentiation.

[93]  G. Elston,et al.  Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey , 1999, The Journal of comparative neurology.

[94]  A. Lavdas,et al.  The Medial Ganglionic Eminence Gives Rise to a Population of Early Neurons in the Developing Cerebral Cortex , 1999, The Journal of Neuroscience.

[95]  S. Anderson,et al.  Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. , 1999, Cerebral cortex.

[96]  P. Rakic,et al.  The role of cell death in regulating the size and shape of the mammalian forebrain. , 1999, Cerebral cortex.

[97]  P. Rakić,et al.  Genetic control of cortical development. , 1999, Cerebral cortex.

[98]  T. Insel,et al.  The primate neocortex in comparative perspective using magnetic resonance imaging. , 1999, Journal of human evolution.

[99]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[100]  Keisuke Kuida,et al.  Reduced Apoptosis and Cytochrome c–Mediated Caspase Activation in Mice Lacking Caspase 9 , 1998, Cell.

[101]  P. Rakić,et al.  Changes in cell-cycle kinetics during the development and evolution of primate neocortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  M. Hatten,et al.  New directions for neuronal migration , 1998, Current Opinion in Neurobiology.

[103]  I. Kostović,et al.  Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain , 1997, The Journal of comparative neurology.

[104]  Paul J. Harrison Schizophrenia: a disorder of neurodevelopment? , 1997, Current Opinion in Neurobiology.

[105]  C. Shatz Form from function in visual system development. , 1997, Harvey lectures.

[106]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[107]  Keisuke Kuida,et al.  Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice , 1996, Nature.

[108]  F. Valverde,et al.  Dynamics of Cell Migration from the Lateral Ganglionic Eminence in the Rat , 1996, The Journal of Neuroscience.

[109]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[110]  P. Rakic A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution , 1995, Trends in Neurosciences.

[111]  V. Mountcastle The evolution of ideas concerning the function of the neocortex. , 1995, Cerebral cortex.

[112]  M Marín-Padilla [The development of human cerebral cortex]. , 1995, Revista de neurologia.

[113]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[114]  A. Goffinet,et al.  The human transient subpial granular layer: An optical, immunohistochemical, and ultrastructural analysis , 1992, The Journal of comparative neurology.

[115]  J G Parnavelas,et al.  Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. , 1991, Cerebral cortex.

[116]  E. A. Arbas,et al.  Evolution in nervous systems. , 1991, Annual review of neuroscience.

[117]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[118]  C. Shatz Impulse activity and the patterning of connections during cns development , 1990, Neuron.

[119]  P. Rakić,et al.  Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain , 1990, The Journal of comparative neurology.

[120]  P. Rakić,et al.  Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  I. Kostović,et al.  Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. , 1990, Progress in brain research.

[122]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[123]  P. Evrard,et al.  Topographical and Cytological Evolution of the Glial Phase During Prenatal Development of the Human Brain: Histochemical and Electron Microscopic Study , 1988, Journal of neuropathology and experimental neurology.

[124]  P. Goldman-Rakic,et al.  Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. , 1986, Science.

[125]  P. Emson,et al.  Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[126]  Albert M. Galaburda,et al.  Cerebral dominance : the biological foundations , 1984 .

[127]  N. Kamel,et al.  A histochemical and electron microscopic study , 1984 .

[128]  P. Rakic,et al.  Regulation of axon number in primate optic nerve by prenatal binocular competition , 1983, Nature.

[129]  P. Rakić,et al.  Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. , 1983, Developmental biology.

[130]  P. Rakić,et al.  Overproduction and elimination of retinal axons in the fetal rhesus monkey. , 1983, Science.

[131]  H. Loos,et al.  Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development , 1982, Neuroscience Letters.

[132]  J. Moossy Histology and Histopathology of the Nervous System , 1982 .

[133]  Webb Haymaker,et al.  Histology and Histopathology of the Nervous System , 1982 .

[134]  P. Rakic,et al.  Development of visual centers in the primate brain depends on binocular competition before birth. , 1981, Science.

[135]  P. Rakić,et al.  Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[136]  R. Northcutt Evolution of the telencephalon in nonmammals. , 1981, Annual review of neuroscience.

[137]  P. Rakic,et al.  Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain , 1980, The Journal of comparative neurology.

[138]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[139]  P. Rakic,et al.  Arrested proliferation of radial glial cells during midgestation in rhesus monkey , 1979, Nature.

[140]  P. Rakić,et al.  Mechanisms of cortical development: a view from mutations in mice. , 1978, Annual review of neuroscience.

[141]  S. Gould,et al.  Ontogeny and Phylogeny , 1978 .

[142]  J. Changeux,et al.  Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks , 1976, Nature.

[143]  P. Rakic Prenatal genesis of connections subserving ocular dominance in the rhesus monkey , 1976, Nature.

[144]  V. Caviness,et al.  Mechanical model of brain convolutional development. , 1975, Science.

[145]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[146]  Edward P. Sayre,et al.  Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain , 1974, Nature.

[147]  P. Rakić Neurons in Rhesus Monkey Visual Cortex: Systematic Relation between Time of Origin and Eventual Disposition , 1974, Science.

[148]  P. Rakić,et al.  Neuronal migration, with special reference to developing human brain: a review. , 1973, Brain research.

[149]  P. Rakić Mode of cell migration to the superficial layers of fetal monkey neocortex , 1972, The Journal of comparative neurology.

[150]  A. Brun The subpial granular layer of the foetal cerebral cortex in man. , 1965, Acta pathologica et microbiologica Scandinavica.

[151]  R. Sidman,et al.  Autoradiographic Study of Cell Migration during Histogenesis of Cerebral Cortex in the Mouse , 1961, Nature.