Molecular Line Radiative Transfer in Protoplanetary Disks: Monte Carlo Simulations versus Approximate Methods

We analyze the line radiative transfer in protoplanetary disks using several approximate methods and a well-tested accelerated Monte Carlo code. A low-mass flaring disk model with uniform as well as stratified molecular abundances is adopted. Radiative transfer in low and high rotational lines of CO, C18O, HCO+, DCO+, HCN, CS, and H2CO is simulated. The corresponding excitation temperatures, synthetic spectra, and channel maps are derived and compared to the results of the Monte Carlo calculations. A simple scheme that describes the conditions of the line excitation for a chosen molecular transition is elaborated. We find that the simple LTE approach can safely be applied for the low molecular transitions only, while it significantly overestimates the intensities of the upper lines. In contrast, the full escape probability (FEP) approximation can safely be used for the upper transitions (Jup ≳ 3), but it is not appropriate for the lowest transitions because of the maser effect. In general, the molecular lines in protoplanetary disks are partly subthermally excited and require more sophisticated approximate line radiative transfer methods. We analyze a number of approximate methods, namely, LVG, vertical escape probability (VEP), and vertical one ray (VOR) and discuss their algorithms in detail. In addition, two modifications to the canonical Monte Carlo algorithm that allow a significant speed up of the line radiative transfer modeling in rotating configurations by a factor of 10-50 are described.

[1]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[2]  R. Neri,et al.  Arcsecond-resolution 12CO mapping of the yellow hypergiants IRC +10420 and AFGL 2343 , 2007, astro-ph/0702400.

[3]  H. Gail,et al.  2-D preplanetary accretion disks I. Hydrodynamics, chemistry, and mixing processes , 2007 .

[4]  A. Dutrey,et al.  Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480 , 2007, astro-ph/0701425.

[5]  Y. Aikawa Cold CO Gas in Protoplanetary Disks , 2007, astro-ph/0701366.

[6]  A. Tielens,et al.  The interpretation of water emission from dense interstellar clouds , 2006, astro-ph/0612624.

[7]  T. Henning,et al.  Chemistry in disks. I. Deep search for N2H+ in the protoplanetary disks around LkCa 15, MWC 480, and DM Tauri , 2006, astro-ph/0612534.

[8]  C. Brinch,et al.  Structure and dynamics of the class I young stellar object L1489 IRS , 2006, astro-ph/0610672.

[9]  J. Alcolea,et al.  3D continuum radiative transfer : A new adaptive grid construction algorithm based on the Monte Carlo method , 2006 .

[10]  T. Henning,et al.  Gas-Phase CO in Protoplanetary Disks: A Challenge for Turbulent Mixing , 2006, astro-ph/0607010.

[11]  J. Cernicharo,et al.  The Excitation of N2H+ in Interstellar Molecular Clouds. I. Models , 2006, astro-ph/0606479.

[12]  P. Caselli,et al.  On the internal structure of starless cores II. A molecular survey of L1498 and L1517B , 2006, astro-ph/0605513.

[13]  D. Narayanan,et al.  Molecular Line Emission from Gravitationally Unstable Protoplanetary Disks , 2006, astro-ph/0605329.

[14]  Radiative transfer in protoplanetary disks , 2006, astro-ph/0604067.

[15]  M. Spaans,et al.  Line profiles of water for the photon dominated region and embedded sources in the S140 region , 2006, astro-ph/0603672.

[16]  T. Henning,et al.  CB 17: Inferring the Dynamical History of a Prestellar Core with Chemodynamical Models , 2006, astro-ph/0603600.

[17]  J. Augereau,et al.  Modeling the gas-phase chemistry of the transitional disk around HD 141569A , 2006, astro-ph/0603515.

[18]  A. Dutrey,et al.  Deuterated molecules in DM Tauri: DCO$^+$, but no HDO , 2006, astro-ph/0602396.

[19]  C. Ceccarelli,et al.  Water in the envelopes and disks around young high-mass stars , 2005, astro-ph/0510640.

[20]  Moshe ElitzurAndres Asensio Ramos A new exact method for line radiative transfer , 2005, astro-ph/0510616.

[21]  M. Allen,et al.  Turbulence driven diffusion in protoplanetary disks – chemical effects in the outer regions , 2006 .

[22]  M. Spaans,et al.  THE EXCITATION OF WATER IN THE S140 PHOTON DOMINATED REGION. D. R. Poelman , 2005, astro-ph/0506111.

[23]  A. Weiss,et al.  The Spectral Energy Distribution of CO lines in M82 , 2005, astro-ph/0504377.

[24]  A. Dutrey,et al.  Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk , 2005, astro-ph/0504023.

[25]  T. Henning,et al.  Millimeter Observations and Modeling of the AB Aurigae System , 2004, astro-ph/0411653.

[26]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[27]  Alyson G. Wilson The dusty and molecular universe: a prelude to Herschel and ALMA , 2005 .

[28]  G. Rybicki,et al.  Radiative Transfer and Starless Cores , 2004, astro-ph/0407433.

[29]  Astronomy,et al.  Organic molecules in protoplanetary disks around T Tauri and Herbig Ae stars , 2004, astro-ph/0406577.

[30]  B. Shustov,et al.  A method for molecular-line radiative-transfer computations and its application to a two-dimensional model for the starless core L1544 , 2004 .

[31]  T. Henning,et al.  Reduction of chemical networks. II. Analysis of the fractional ionisation in protoplanetary discs , 2004, astro-ph/0403555.

[32]  Qizhou Zhang,et al.  Imaging the Disk around TW Hydrae with the Submillimeter Array , 2004, astro-ph/0403412.

[33]  T. Henning,et al.  Transport processes and chemical evolution in steady accretion disk flows , 2004 .

[34]  G. Blake,et al.  Continuum and CO/HCO+ Emission from the Disk Around the T Tauri Star LkCa 15 , 2003, astro-ph/0307246.

[35]  E. Dartois,et al.  Structure of the DM Tau Outer Disk: Probing the vertical kinetic temperature gradient , 2003 .

[36]  G. V. Zadelhoff,et al.  Interferometric Observations of Formaldehyde in the Protoplanetary Disk around LkCa 15 , 2002, astro-ph/0211440.

[37]  C. Dullemond,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Discovery of a Very Cool Object with Extraordinarily Strong Hα Emission a Substellar Mass Function for Alpha Per , 2022 .

[38]  M. Juvela,et al.  Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics , 2002, astro-ph/0208503.

[39]  H. Gail Radial mixing in protoplanetary accretion disks. III. Carbon dust oxidation and abundance of hydrocarbons in comets , 2002 .

[40]  T. Henning,et al.  Molecular Distributions in the Inner Regions of Protostellar Disks , 2002 .

[41]  T. O. S. University,et al.  Warm molecular layers in protoplanetary disks , 2002, astro-ph/0202060.

[42]  J. Rawlings,et al.  Modelling line profiles in infalling cores , 2001 .

[43]  C. I. O. Technology.,et al.  Submillimeter lines from circumstellar disks around pre-main sequence stars , 2001, astro-ph/0108375.

[44]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[45]  V. Ossenkopf,et al.  Massive core parameters from spatially unresolved multi-line observations , 2001, astro-ph/0106465.

[46]  H. Olofsson,et al.  Models of circumstellar molecular radio line emission - Mass loss rates for a sample of bright carbon stars , 2001, astro-ph/0101477.

[47]  L. Hartmann,et al.  Accretion Disks around Young Objects. III. Grain Growth , 2001, astro-ph/0101443.

[48]  E. Herbst,et al.  Two-dimensional distributions and column densities of gaseous molecules , 1999, astro-ph/0202062.

[49]  L. Hartmann,et al.  Accretion Disks around Young Objects. II. Tests of Well-mixed Models with ISM Dust , 1999, astro-ph/9907330.

[50]  E. Bergin,et al.  Formation of Interstellar Ices behind Shock Waves , 1998, astro-ph/9811228.

[51]  N. Calvet,et al.  Accretion Disks around Young Objects. I. The Detailed Vertical Structure , 1998, astro-ph/9806060.

[52]  E. F. Dishoeck,et al.  Chemical evolution of star-forming regions. , 1998, Annual review of astronomy and astrophysics.

[53]  T. Forveille,et al.  X-ray and molecular emission from the nearest region of recent star formation. , 1997, Science.

[54]  T. Millar,et al.  The UMIST Database for Astrochemistry 1995 , 1997 .

[55]  E. Herbst,et al.  Three-phase chemical models of dense interstellar clouds: gas, dust particle mantles and dust particle surfaces , 1993 .

[56]  E. Herbst,et al.  Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules , 1992 .

[57]  P. Goldsmith,et al.  Curves for analysis of the two lowest rotational transitions of carbon monoxide using the large velocity gradient radiative transfer model , 1983 .

[58]  S. Chu,et al.  Carbon monoxide in collapsing interstellar clouds , 1975 .

[59]  J. Castor Spectral line formation in Wolf-Rayet envelopes. , 1970 .

[60]  D. Mihalas,et al.  Non-Lte Model Atmospheres. III. a Complete-Linearization Method , 1969 .