Stratigraphic response to fragmentation of the Miocene Andean foreland basin, NW Argentina

Foreland basins are sensitive recorders of spatiotemporal variations in tectonic and climatic forcing associated with an approaching orogenic front. Thus, analysis of foreland deposits and their associated deformation patterns and provenance signals allows assessment of tectonic and sedimentary processes during orogeny, providing clues to past environmental conditions. The Calchaquí region in the southern part of the northwest Argentinian Eastern Cordillera (ca. 25–26°S lat) structurally evolved from a contiguous Paleogene foreland of the Andes into a broken foreland and finally an intermontane basin landscape. This history is recorded in the sedimentary sequences of the Mio‐Pliocene Angastaco and Palo Pintado Formations. We combine sedimentological methods, U‐Pb zircon and K‐Ar glass geochronology, clay mineralogy, and geochemical weathering indices with apatite fission track and (U‐Th‐Sm)/He thermochronology, structural data, and fault modelling to document the stratigraphic response to the fluvial and tectonic processes that followed the formation of the broken foreland. Our observations suggest that fluvial systems in the Calchaquí region repeatedly changed their location and geometry. These fluvial systems were associated with pro‐ and retrograding gravel wedges that most likely formed in response to the structural growth of the Aguas de Castilla and Altos de Viñaco ranges that bound the basin to the east. A compartmentalisation of the foreland with restricted fluvial networks must have occurred by ca. 9 Ma. Our results demonstrate that the reconstruction of stratigraphic architectures constitutes a powerful means to better understand intrabasin tectonics and surface uplift in foreland basins.

[1]  R. Alonso,et al.  Flora and insect trace fossils from the Mio-Pliocene Quebrada del Toro locality (Gobernador Solá, Salta, Argentina) , 2020, Journal of South American Earth Sciences.

[2]  C. Galli,et al.  Inferencias paleoclimáticas para el Mioceno tardío en la cuenca de Angastaco basadas en el análisis fisionómico foliar: Formación Palo Pintado, Salta, Argentina , 2020, Andean Geology.

[3]  M. Strecker,et al.  Late Cenozoic topographic evolution of the Eastern Cordillera and Puna Plateau margin in the southern Central Andes (NW Argentina) , 2020 .

[4]  M. Strecker,et al.  Episodic out-of-sequence deformation promoted by Cenozoic fault reactivation in NW Argentina , 2020 .

[5]  G. Retallack Soils of the Past: An Introduction to Paleopedology , 2019 .

[6]  P. K. Goswami,et al.  Depositional processes and sedimentation pattern in an intermontane basin: Insights from the Imphal Basin, Indo‐Myanmar Range, NE India , 2018 .

[7]  G. Hoke,et al.  Regional landscape response to thrust belt dynamics: The Iglesia basin, Argentina , 2018, Basin Research.

[8]  C. Papa,et al.  A Middle Miocene (13.5–12 Ma) deformational event constrained by volcanism along the Puna-Eastern Cordillera border, NW Argentina , 2017 .

[9]  M. Strecker,et al.  Elevation-dependent changes in n-alkane δD and soil GDGTs across the South Central Andes , 2016 .

[10]  M. Strecker,et al.  Miocene orographic uplift forces rapid hydrological change in the southern central Andes , 2016, Scientific Reports.

[11]  M. Strecker,et al.  Surface uplift and convective rainfall along the southern Central Andes (Angastaco Basin, NW Argentina) , 2016 .

[12]  C. Davis,et al.  The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae) , 2016, The New phytologist.

[13]  Gary J. Hampson,et al.  Sediment Transport Model For the Eocene Escanilla Sediment-Routing System: Implications For the Uniqueness of Sequence Stratigraphic Architectures , 2015 .

[14]  C. Limarino,et al.  Using Fluvial Cyclicity To Decipher the Interaction of Basement- and Fold-Thrust-Belt Tectonics In A Broken Foreland Basin: Vinchina Formation (Miocene), Northwestern Argentina , 2015 .

[15]  A. Varela Tectonic control of accommodation space and sediment supply within the Mata Amarilla Formation (lower Upper Cretaceous) Patagonia, Argentina , 2015 .

[16]  Paula Bona,et al.  Caiman cf. Latirostris (Alligatoridae, Caimaninae) in the Late Miocene Palo Pintado Formation, Salta Province, Argentina: Paleogeographic and Paleoenvironmental Considerations , 2014 .

[17]  C. Galli,et al.  Tectonic controls on the evolution of the Andean Cenozoic foreland basin: Evidence from fluvial system variations in the Payogastilla Group, in the Calchaquí, Tonco and Amblayo Valleys, NW Argentina , 2014 .

[18]  S. M. Kay,et al.  NIVELES PIROCLÁSTICOS COMO HERRAMIENTAS DE CORRELACIÓN EN LOS DEPÓSITOS CENOZOICOS DEL GRUPO PAYOGASTILLA, VALLES CALCHAQUÍ, TONCO Y AMBLAYO, EN EL NOROESTE DE ARGENTINA , 2014 .

[19]  K. Huntington,et al.  Uplift of the Central Andes of NW Argentina associated with upper crustal shortening, revealed by multiproxy isotopic analyses , 2014 .

[20]  L. Martinez Fossil legume woods from the Late Miocene, Chiquimil Formation (Santa María Basin), Argentina , 2014 .

[21]  G. Pe‐Piper,et al.  Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism , 2014 .

[22]  M. Strecker,et al.  Assessing tectonic and climatic causal mechanisms in foreland‐basin stratal architecture: insights from the Alborz Mountains, northern Iran , 2014 .

[23]  G. Gehrels,et al.  Influence of pre-Andean crustal structure on Cenozoic thrust belt kinematics and shortening magnitude: Northwestern Argentina , 2013 .

[24]  M. Strecker,et al.  Middle Eocene‐Oligocene broken‐foreland evolution in the Andean Calchaqui Valley, NW Argentina: insights from stratigraphic, structural and provenance studies , 2013 .

[25]  F. Nieto,et al.  Geothermobarometry of very low-grade metamorphic pelites of the Vendian–Early Cambrian Puncoviscana Formation (NW Argentina) , 2013 .

[26]  Andrés Bilmes,et al.  Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina , 2013 .

[27]  F. Hongn,et al.  RELACIONES ESTRATIGRÁFICAS DE LAS FORMACIONES QUEBRADA DE LOS COLORADOS Y ANGASTACO (PALEÓGENO-NEÓGENO), VALLES CALCHAQUÍES, SALTA (ARGENTINA): SIGNIFICADO EN EL ANÁLISIS DE LA CUENCA DEL GRUPO PAYOGASTILLA , 2013 .

[28]  J. Muñoz,et al.  Basin fragmentation controlled by tectonic inversion and basement uplift in Sierras Pampeanas and Santa Bárbara System, northwest Argentina , 2013 .

[29]  J. Muñoz,et al.  Thick-skinned tectonic style resulting from the inversion of previous structures in the southern Cordillera Oriental (NW Argentine Andes) , 2013 .

[30]  P. Heller,et al.  Field test of autogenic control on alluvial stratigraphy (Ferris Formation, Upper Cretaceous–Paleogene, Wyoming) , 2012 .

[31]  G. Gehrels,et al.  Major Miocene exhumation by fault‐propagation folding within a metamorphosed, early Paleozoic thrust belt: Northwestern Argentina , 2012 .

[32]  G. Gehrels,et al.  Late Eocene–Pliocene basin evolution in the Eastern Cordillera of northwestern Argentina (25°–26°S): regional implications for Andean orogenic wedge development , 2012 .

[33]  B. Bookhagen,et al.  Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes , 2012 .

[34]  Kerry Gallagher,et al.  Transdimensional inverse thermal history modeling for quantitative thermochronology , 2012 .

[35]  S. Davidson,et al.  Unconfined alluvial flow processes: recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction , 2012 .

[36]  B. Bookhagen,et al.  Structural, Geomorphic, and Depositional Characteristics of Contiguous and Broken Foreland Basins: Examples from the Eastern Flanks of the Central Andes in Bolivia and NW Argentina , 2012 .

[37]  G. Gehrels,et al.  Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation , 2011 .

[38]  P. Silva,et al.  Large‐scale architecture in non‐marine basins: the response to the interplay between accommodation space and sediment supply , 2011 .

[39]  D. Stockli,et al.  Patterns and timing of exhumation and deformation in the Eastern Cordillera of NW Argentina revealed by (U‐Th)/He thermochronology , 2011 .

[40]  J. Viramonte,et al.  Procedencia de los depósitos del Grupo Payogastilla (Cenozoico), río Calchaquí, provincia de Salta , 2011 .

[41]  B. Bookhagen,et al.  Neogene to Quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25°S) , 2011 .

[42]  Chris Paola,et al.  Shredding of environmental signals by sediment transport , 2010 .

[43]  C. Papa,et al.  Integrated analysis for constraining palaeoclimatic and volcanic influences on clay–mineral assemblages in orogenic basins (Palaeogene Andean foreland, Northwestern Argentina) , 2010 .

[44]  B. Carrapa,et al.  Effect of late Cenozoic aridification on sedimentation in the Eastern Cordillera of northwest Argentina (Angastaco basin) , 2010 .

[45]  I. Petrinovic,et al.  Inversión y reactivación tectónicas cretácicocenozoicas en el Noroeste Argentino: influencia de las heterogeneidades del basamento neoproterozoico-paleozoico inferior , 2010 .

[46]  M. Strecker,et al.  Late Miocene climate variability and surface elevation in the central Andes , 2010 .

[47]  C. Papa,et al.  Middle Eocene deformation–sedimentation in the Luracatao Valley: Tracking the beginning of the foreland basin of northwestern Argentina , 2009 .

[48]  K. Farley,et al.  Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model , 2009 .

[49]  I. Lunt,et al.  Depositional Models of Braided Rivers , 2009 .

[50]  Gregory R. Foltz,et al.  Strong Indian Ocean sea surface temperature signals associated with the Madden‐Julian Oscillation in late 2007 and early 2008 , 2008 .

[51]  Bodo Bookhagen,et al.  Orographic barriers, high‐resolution TRMM rainfall, and relief variations along the eastern Andes , 2008 .

[52]  M. Strecker,et al.  Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene , 2007 .

[53]  J. Muñoz,et al.  Thrusting Evolution in the Southern Cordillera Oriental (Northern Argentine Andes) , 2007 .

[54]  B. Bookhagen,et al.  Tectonics and Climate of the Southern Central Andes , 2007 .

[55]  C. Papa,et al.  Middle Eocene deformation and sedimentation in the Puna-Eastern Cordillera transition (23°-26°S): Control by preexisting heterogeneities on the pattern of initial Andean shortening , 2007 .

[56]  M. Strecker,et al.  Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening , 2006 .

[57]  J. Muñoz,et al.  The role of inversion tectonics in the structure of the Cordillera Oriental (NW Argentinean Andes) , 2006 .

[58]  P. Reiners,et al.  USING THERMOCHRONOLOGY TO UNDERSTAND OROGENIC EROSION , 2006 .

[59]  M. Strecker,et al.  Propagation of orographic barriers along an active range front: insights from sandstone petrography and detrital apatite fission‐track thermochronology in the intramontane Angastaco basin, NW Argentina , 2006 .

[60]  M. Strecker,et al.  Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina , 2005 .

[61]  G. Nichols,et al.  Bedrock lithology control on contemporaneous alluvial fan facies, Oligo‐Miocene, southern Pyrenees, Spain , 2005 .

[62]  Douglas W. Burbank,et al.  Exhumation of basement‐cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology , 2004 .

[63]  P. DeCelles Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system , 2004 .

[64]  R. Allmendinger,et al.  Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia , 2003 .

[65]  M. Strecker,et al.  Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir‐Tien Shan region, central Asia): An example of intracontinental deformation due to the Indo‐Eurasia collision , 2002 .

[66]  E. M. Guimaraes,et al.  PROVENIÊNCIA DE ARENITOS DAS FORMAÇÕES UBERABA E MARÍLIA (GRUPO BAURU) E DO GARIMPO DO BANDEIRA: IMPLICAÇÕES PARA A CONTROVÉRSIA SOBRE A FONTE DO DIAMANTE DO TRIÂNGULO MINEIRO , 2002 .

[67]  D. García-Castellanos Interplay between lithospheric flexure and river transport in foreland basins , 2002 .

[68]  D. Starck,et al.  The late miocene climatic change—persistence of a climatic signal through the orogenic stratigraphic record in northwestern Argentina , 2001 .

[69]  C. Galli,et al.  Middle Miocene tectonic development of the Transition Zone, Salta Province, northwest Argentina: Magnetic stratigraphy from the Metan Subgroup, Sierra de Gonzalez , 2000 .

[70]  E. Keller Active Tectonics and Alluvial Rivers , 2000 .

[71]  V. Voller,et al.  A two‐diffusion model of fluvial stratigraphy in closed depositional basins , 2000 .

[72]  H. Flesche,et al.  Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs Uplift, SW Wyoming, USA , 1999 .

[73]  V. Ramos,et al.  Deep structure of the Metan-Guachipas region: tectonic inversion in Northwestern Argentina , 1997 .

[74]  S. Kay,et al.  THE EVOLUTION OF THE ALTIPLANO-PUNA PLATEAU OF THE CENTRAL ANDES , 1997 .

[75]  K. Farley,et al.  The effects of long alpha-stopping distances on (UTh)/He ages , 1996 .

[76]  Nicholas Brozović,et al.  Interactions of growing folds and coeval depositional systems , 1996 .

[77]  P. DeCelles,et al.  Foreland basin systems , 1996 .

[78]  A. Miall The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology , 1996 .

[79]  S. Taylor,et al.  Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America , 1995 .

[80]  C. Paola,et al.  The large scale dynamics of grain-size variation in alluvial basins , 1992 .

[81]  G. Nanson,et al.  A genetic classification of floodplains , 1992 .

[82]  Eric A. Erslev,et al.  Trishear fault-propagation folding , 1991 .

[83]  W. Huff X-ray Diffraction and the Identification and Analysis of Clay Minerals , 1990 .

[84]  C. Paola,et al.  Two-phase stratigraphic model of foreland-basin sequences , 1988 .

[85]  J. Pizzuto Sediment diffusion during overbank flows , 1987 .

[86]  R. Allmendinger,et al.  The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation , 1986 .

[87]  D. Burbank,et al.  The late cenozoic chronologic and stratigraphic development of the Kashmir intermontane basin, Northwestern Himalaya , 1983 .

[88]  R. Allmendinger,et al.  Paleogeography and Andean structural geometry, northwest Argentina , 1983 .

[89]  G. M. Young,et al.  Early Proterozoic climates and plate motions inferred from major element chemistry of lutites , 1982, Nature.

[90]  T. Jordan Thrust Loads and Foreland Basin Evolution, Cretaceous, Western United States , 1981 .

[91]  V. Burtman Faults of Middle Asia , 1980 .

[92]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[93]  C. Papa,et al.  Exhumation and structural evolution of the high-elevation Malcante Range, Eastern Cordillera, NW Argentina , 2021, Journal of South American Earth Sciences.

[94]  P. DeCelles,et al.  Structural and thermochronologic constraints on kinematics and timing of inversion of the Salta rift in the Tonco-Amblayo sector of the Andean retroarc fold-thrust belt, northwestern Argentina , 2019, Andean Tectonics.

[95]  C. Papa,et al.  New, Late Miocene mammalian assemblage from the Palo Pintado Formation (Northwestern Argentina) , 2018 .

[96]  O. Catuneanu Sequence Stratigraphy: Guidelines for a Standard Methodology , 2017 .

[97]  D. Davis,et al.  New constraints on orogenic models of the southern Central Andean Plateau: Cenozoic basin evolution and bedrock exhumation , 2017 .

[98]  Andrew D. Miall,et al.  Fluvial Depositional Systems , 2014 .

[99]  T. Jordan Retroarc foreland and related basins , 1995 .

[100]  R. Mon,et al.  Tectonic Evolution of the Andes of Northern Argentina , 1995 .

[101]  R. A. Marquillas,et al.  Tectonic and Sedimentary Evolution of the Cretaceous-Eocene Salta Group Basin, Argentina , 1994 .

[102]  Juan Fernández,et al.  Channel migration patterns and related sequences in some alluvial fan systems , 1994 .

[103]  R. Allmendinger,et al.  Andean reactivation of the Cretaceous Salta rift, northwestern Argentina , 1991 .

[104]  R. D. Dallmeyer,et al.  Age of the Payogastilla Group: Implications for foreland basin development, NW Argentina☆ , 1990 .

[105]  Paul F. Green,et al.  The zeta age calibration of fission-track dating , 1983 .