Very-Small-Satellite Design for Distributed Space Missions

A new class of remote sensing and scientific distributed space missions is emerging that requires hundreds to thousands of satellites for simultaneous multipoint sensing. These missions, stymied by the lack of a low-cost mass-producible sensor node, can become reality by merging the concepts of distributed satellite systems and terrestrial wireless sensor networks. A novel, subkilogram, very-small-satellite design can potentially enable these missions. Existing technologies are first investigated, such as standardized picosatellites and microengineered aerospace systems. Two new alternatives are then presented that focus on a low-cost approach by leveraging existing commercial mass-production capabilities: a satellite on a chip (SpaceChip) and a satellite on a printed circuit board. Preliminary results indicate that SpaceChip and a satellite on a printed circuit board offer an order of magnitude of cost savings over existing approaches.

[1]  Martin Sweeting,et al.  System-on-a-Chip Development for Small Satellite Onboard Data Handling , 2004, J. Aerosp. Comput. Inf. Commun..

[2]  Jan Tommy Gravdahl,et al.  Magnetic attitude control for satellites , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[3]  Michael Swartwout,et al.  University-Class Satellites: From Marginal Utility to 'Disruptive' Research Platforms , 2004 .

[4]  James R. Wertz,et al.  Mission geometry; orbit and constellation design and management , 2001 .

[5]  Siegfried Janson Mass-producible silicon spacecraft for 21st century missions , 1999 .

[6]  Kay Römer,et al.  The design space of wireless sensor networks , 2004, IEEE Wireless Communications.

[7]  Daniel E. Hastings,et al.  Generalized Characteristics of Communication, Sensing, and Navigation Satellite Systems , 2000 .

[8]  K. Breuer,et al.  MEMS, microengineering and aerospace systems , 1999 .

[9]  David J. Barnhart An Improved Asynchronous Implementation of a Fast Fourier Transform Architecture for Space Applications , 1999 .

[10]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[11]  Adam Huang,et al.  Development of an Inspector Satellite Using Photostructurable Glass/Ceramic Materials , 2005 .

[12]  K. Pister,et al.  An SOI process for fabrication of solar cells, transistors and electrostatic actuators , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[13]  Chunyan Wang,et al.  Design and implementation of electrical-supply-free VLSI circuits , 2005 .

[14]  Harry Li,et al.  Power Management And Distribution For System on a Chip for Space Applications , 1999 .

[15]  Charles Chien Digital Radio Systems on a Chip: A Systems Approach , 2000 .

[16]  Nathalie Corcoral,et al.  PARASOL and CALIPSO : Experience Feedback on Operations of Micro and Small Satellites , 2006 .

[17]  Kristofer S. J. Pister,et al.  SoC Issues for RF Smart Dust Wireless sensor nodes, each a self-powered system performing sensing, communication, and computation, form reliable mesh networks coordinating efforts to add intelligence to the environment. , 2006 .

[18]  David W. Miller,et al.  Multi-Objective, Multidisciplinary Design Optimization Methodology for Distributed Satellite Systems , 2004 .

[19]  Eugene Serabyn,et al.  Scope and objectives of the Terrestrial Planet Finder interferometer study , 2003 .

[20]  Martin Sweeting,et al.  Design of self-powered wireless system-on-a-chip sensor nodes for hostile environments , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[21]  Siegfried W. Janson,et al.  Microtechnology for space systems , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[22]  Siegfried Janson Micro/Nanotechnology for Micro/Nano/Picosatellites , 2003 .

[23]  Jonathan P. How,et al.  Formation flying experiments on the Orion-Emerald mission , 2001 .

[24]  Paul Benshoof,et al.  JAMFEST - A Cost Effective Solution to GPS Vulnerability Testing , 2004 .

[25]  T. Kadoyama,et al.  A complete single-chip GPS receiver with 1.6-V 24-mW radio in 0.18-/spl mu/m CMOS , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[26]  Richard G. Cobb,et al.  Techsat 21 - A revolutionary concept in distributed space based sensing , 1998 .

[27]  Martin Sweeting,et al.  Satellite-on-a-Chip Development for Future Distributed Space Missions , 2006 .

[28]  Jordi Puig-Suari,et al.  CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation , 2000 .

[29]  A. Sugavanam,et al.  On-chip antennas in silicon ICs and their application , 2005, IEEE Transactions on Electron Devices.

[30]  T. Vladimirova,et al.  System-on-a-Chip Design of Self-Powered Wireless Sensor Nodes for Hostile Environments , 2007, 2007 IEEE Aerospace Conference.

[31]  W. E. Morrow,et al.  The West Ford experiment—An introduction to this issue , 1964 .

[32]  E.E. Swartzlander,et al.  VLSI, MCM, and WSI: A Design Comparison , 1998, IEEE Des. Test Comput..

[33]  Ralph Judson Smith,et al.  Circuits, devices and systems , 1966 .

[34]  Luis Castañer,et al.  Fabrication of monolithic photovoltaic arrays on crystalline silicon by wafer bonding and deep etching techniques , 2005 .

[35]  Adam Huang,et al.  Development of a 100-gm-class inspector satellite using photostructurable glass/ceramic materials , 2002, SPIE LASE.

[36]  J. Carpenter,et al.  BENCHMARK PROBLEMS FOR SPACECRAFT FORMATION FLYING MISSIONS , 2003 .

[37]  David P. Miller,et al.  Deployable Inspector Spacecraft for Distributed Field Measurements , 2004 .

[38]  John Higinbotham,et al.  A System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications , 2003 .

[39]  Henry Helvajian,et al.  Microengineering aerospace systems , 1999 .

[40]  Liang Xuwen,et al.  Silicon solid-state small satellite design based on IC and MEMS , 1998, 1998 5th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No.98EX105).

[41]  J. Spoto Looking beyond monolithic myopia , 2003 .

[42]  C. Edery-Guirardo Small Relay Satellite(s) for Improving the Reactivity of Observation Satellites , 2003 .

[43]  Bedrich J. Hosticka CMOS sensor systems , 1998 .

[44]  Richard R. Vondrak,et al.  Nanosat constellations for geospace science , 2000 .

[45]  Edward W. Ashford,et al.  Non-Geo systems—where have all the satellites gone? , 2004 .

[46]  L. Habash Krause,et al.  Microsatellite missions to conduct midlatitude studies of equatorial ionospheric plasma bubbles , 2005 .

[47]  Matt Bille,et al.  Military microsatellites - Matching requirements and technology , 2000 .

[48]  Chung-Yu Wu,et al.  A low-power implantable Pseudo-BJT-based silicon retina with solar cells for artificial retinal prostheses , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[49]  Kristofer S. J. Pister,et al.  SoC Issues for RF Smart Dust , 2006, Proceedings of the IEEE.

[50]  R. B. Cohen,et al.  Digital MicroPropulsion , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[51]  Brent Stucker,et al.  Responsive Space Requires Responsive Manufacturing-Part II , 2004 .

[52]  B. Jackson,et al.  A reconfigurable multifunctional architecture approach for next-generation nanosatellite design , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[53]  Mark L. Psiaki,et al.  Nanosatellite Attitude Stabilization Using Passive Aerodynamics and Active Magnetic Torquing , 2004 .

[54]  R. K. Haaland,et al.  Miniaturized electrostatic analyzer manufactured using photolithographic etching , 2003 .

[55]  Richard L. Petritz Current Status of Large Scale Integration Technology , 1967 .

[56]  Martin Sweeting,et al.  A low-cost femtosatellite to enable distributed space missions , 2006 .

[57]  Robert A. Peters Commercial Intersatellite Links - What Happened? , 2003 .

[58]  Stanley H. Kravitz,et al.  Silicon microfabrication technologies for nano-satellite applications , 2000 .

[59]  Kevin Miller,et al.  Innovative, low cost microspacecraft , 2000 .

[60]  J. Puig-Suari,et al.  Development of a family of picosatellite deployers based on the CubeSat standard , 2002, Proceedings, IEEE Aerospace Conference.

[61]  Craig Underwood,et al.  SNAP-1: A Low Cost Modular COTS-Based Nano-Satellite – Design, Construction, Launch and Early Operations Phase , 2001 .

[62]  M. Bayoumi,et al.  On integrated CMOS-MEMS system-on-chip , 2005, The 3rd International IEEE-NEWCAS Conference, 2005..

[63]  Wai-Chi Fang,et al.  An integrated microspacecraft avionics architecture using 3D multichip module building blocks , 1996, Proceedings International Conference on Computer Design. VLSI in Computers and Processors.

[64]  Jordi Puig-Suari,et al.  CubeSats as Responsive Satellites , 2005 .

[65]  Edward W. Ashford Non-Geo Systems...where have all the Satellites Gones? , 2003 .