Two-dimensional two-wavelength emission technique for soot diagnostics.

A two-dimensional soot diagnostic technique has been developed as an extension of the well-known two-color pyrometry. Two flame images are simultaneously collected on a CCD at selected wavelengths through suitable optics. By use of the dependence of soot emissivity on the soot volume fraction and by comparison with images from a calibrated light source, both the temperature field and the soot distribution can be determined. Validation was carried out through data obtained with other soot diagnostic methods on ethylene diffusion and Diesel oil-rich premixed flames. The current technique readily allowed us to obtain a large amount of data for a thorough description of the soot distribution within the flame. As an example of the technique's potential, data about methane and propane diffusion flames are reported.

[1]  P. J. Pagni,et al.  Particulate volume fractions in diffusion flames , 1979 .

[2]  Gregory M. Dobbs,et al.  CARS Temperature Measurements in Sooting, Laminar Diffusion Flames , 1984 .

[3]  Ö. Gülder,et al.  Two-dimensional imaging of soot volume fraction in laminar diffusion flames. , 1999, Applied optics.

[4]  Hsueh-Chia Chang,et al.  Determination of the wavelength dependence of refractive indices of flame soot , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[5]  Robert J. Santoro,et al.  Soot particle measurements in diffusion flames , 1983 .

[6]  S. De Iuliis,et al.  Determination of soot parameters by a two-angle scattering-extinction technique in an ethylene diffusion flame. , 1998, Applied optics.

[7]  Wonnam Lee,et al.  Soot Study in Laminar Diffusion Flames at Elevated Pressure Using Two-Color Pyrometry and Abel Inversion , 2000 .

[8]  Robert J. Santoro,et al.  Modeling and measurements of soot and species in a laminar diffusion flame , 1996 .

[9]  S. D. Stasio,et al.  Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry , 1994 .

[10]  Robert J. Santoro,et al.  The Transport and Growth of Soot Particles in Laminar Diffusion Flames , 1987 .

[11]  C. Dasch,et al.  One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. , 1992, Applied optics.

[12]  Thomas J. Ahrens,et al.  A sensitive time‐resolved radiation pyrometer for shock‐temperature measurements above 1500 K , 1989 .

[13]  T. T. Charalampopoulos,et al.  Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques , 1992 .

[14]  Damon Honnery,et al.  A soot formation rate map for a laminar ethylene diffusion flame , 1990 .

[15]  R. L. Wal,et al.  Calibration and comparison of laser-induced incandescence with cavity ring-down , 1998 .

[16]  R. J. Santoro,et al.  Soot formation in diffusion flames: Flow rate, fuel species and temperature effects , 1985 .

[17]  Ö. Gülder Soot formation in laminar diffusion flames at elevated temperatures , 1992 .

[18]  G. Faeth,et al.  Soot formation in hydrocarbon/air laminar jet diffusion flames☆ , 1996 .

[19]  I. A. McGrath,et al.  THE EMISSIVITY OF LUMINOUS FLAMES , 1963 .

[20]  C. Shaddix,et al.  Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames , 1996 .

[21]  I. Kennedy,et al.  Soot formation and oxidation in laminar diffusion flames , 1992 .

[22]  Juha Vattulainen,et al.  A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large diesel engines , 2000 .

[23]  R. Santoro,et al.  Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. , 1995, Applied optics.

[24]  M. Barbini,et al.  Determination of the Soot Volume Fraction in an Ethylene Diffusion Flame by Multiwavelength Analysis of Soot Radiation , 1998 .

[25]  Jay P. Gore,et al.  Simultaneous emission absorption measurements in toluene-fueled pool flames: Mean and RMS Properties☆ , 1992 .

[26]  A. Leipertz,et al.  Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. , 1995, Optics letters.

[27]  S. D. Iuliis,et al.  Soot load versus aromatic concentration in diesel oil premixed flames , 2001 .

[28]  P. Greenberg,et al.  Soot volume fraction imaging. , 1997, Applied optics.

[29]  Takashi Kashiwagi,et al.  Simultaneous optical measurement of soot volume fraction and temperature in premixed flames , 1994 .

[30]  Sunil Kumar,et al.  Effective Diameter of Agglomerates for Radiative Extinction and Scattering , 1989 .

[31]  R. L. Wal,et al.  Laser-induced incandescence calibration via gravimetric sampling , 1996 .

[32]  G. Spinolo,et al.  A two-color spatial-scanning pyrometer for the determination of temperature profiles in combustion synthesis reactions , 1995 .

[33]  Ömer L. Gülder,et al.  Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames , 1993 .