UV physics from IR features: New prospects from top flavor violation

New physics in the rare top decays $t \to q \ell^+\ell^-$ is currently very weakly constrained. We show that in a large class of Standard Model extensions, existing experimental constraints on new physics in flavor-conserving processes imply strong indirect bounds on new physics contributions to flavor-violating processes of the form $t \to q \ell^+\ell^-$. These indirect bounds arise from basic principles of quantum field theory together with a few generic conditions on the UV structure of the theory, and are roughly an order of magnitude stronger than the present experimental bounds on the same processes. These constraints provide a theoretically motivated target for experimental searches for $t \to q \ell^+\ell^-$: violation of these bounds would exclude a large class of new physics models, and would provide nontrivial insight into the UV behavior of the new physics.

[1]  A. Greljo,et al.  Rare b decays meet high-mass Drell-Yan , 2022, Journal of High Energy Physics.

[2]  M. Ciuchini,et al.  Constraints on lepton universality violation from rare B decays , 2022, Physical Review D.

[3]  D. Faroughy,et al.  Drell-Yan tails beyond the Standard Model , 2022, Journal of High Energy Physics.

[4]  D. Faroughy,et al.  HighPT: A tool for high-pT Drell-Yan tails beyond the standard model , 2022, Comput. Phys. Commun..

[5]  Grant N. Remmen,et al.  Spinning sum rules for the dimension-six SMEFT , 2022, Journal of High Energy Physics.

[6]  W. Altmannshofer,et al.  Rare decays of b and c hadrons , 2022, 2206.11331.

[7]  Yang Zhang,et al.  The Physics potential of the CEPC. Prepared for the US Snowmass Community Planning Exercise (Snowmass 2021) , 2022, 2205.08553.

[8]  A. Ismail,et al.  Constraining the top electroweak sector of the SMEFT through $Z$ associated top pair and single top production at the HL-LHC , 2022, 2205.07912.

[9]  Jiayin Gu,et al.  Probing top-quark operators with precision electroweak measurements , 2022, Chinese Physics C.

[10]  K. Mimasu,et al.  Moments for positivity: using Drell-Yan data to test positivity bounds and reverse-engineer new physics , 2022, Journal of High Energy Physics.

[11]  David W. Miller,et al.  The International Linear Collider: Report to Snowmass 2021 , 2022, 2203.07622.

[12]  F. Bedeschi,et al.  The Future Circular Collider: a Summary for the US 2021 Snowmass Process , 2022, 2203.06520.

[13]  C. Collaboration,et al.  Search for charged-lepton flavor violation in top quark production and decay in pp collisions at $\sqrt{s} =$ 13 TeV , 2022, 2201.07859.

[14]  Xing-Bo Yuan,et al.  Explaining the  →  anomalies in Z′ scenarios with top-FCNC couplings , 2021, Nuclear Physics B.

[15]  Cen Zhang SMEFTs living on the edge: determining the UV theories from positivity and extremality , 2021, Journal of High Energy Physics.

[16]  Xun-jie Xu,et al.  Searching for new physics from SMEFT and leptoquarks at the P2 experiment , 2021, Physical Review D.

[17]  A. Azatov,et al.  Four-fermion operators at dimension 6: Dispersion relations and UV completions , 2021, Physical Review D.

[18]  J. Wudka,et al.  Multi-lepton probes of new physics and lepton-universality in top-quark interactions , 2021, Nuclear Physics B.

[19]  T. You,et al.  Natural selection rules: new positivity bounds for massive spinning particles , 2021, Journal of High Energy Physics.

[20]  F. Maltoni,et al.  Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC , 2021, Journal of High Energy Physics.

[21]  A. B. Kaliyar,et al.  Test of Lepton-Flavor Universality in B→K^{*}ℓ^{+}ℓ^{-} Decays at Belle. , 2021, Physical review letters.

[22]  Hiren H. Patel,et al.  Parity-Violating Møller Scattering at Next-to-Next-to-Leading Order: Closed Fermion Loops. , 2021, Physical review letters.

[23]  C. Tully,et al.  The muon Smasher’s guide , 2021, Reports on progress in physics. Physical Society.

[24]  W. Altmannshofer,et al.  New physics in rare B decays after Moriond 2021 , 2021, The European Physical Journal C.

[25]  R. A. Mohammed,et al.  Test of lepton universality in beauty-quark decays , 2021, Nature Physics.

[26]  Yong-chao Zhang,et al.  Searching for Z′ bosons at the P2 experiment , 2021, Journal of High Energy Physics.

[27]  Atlas Collaboration Search for new phenomena in events with an energetic jet and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector , 2021, 2102.10874.

[28]  H. Spiesberger,et al.  New physics constraints from atomic parity violation in Cs133 , 2021, Physical Review D.

[29]  S. Westhoff,et al.  The flavor of UV physics , 2021, Journal of High Energy Physics.

[30]  J. Wudka,et al.  New flavor physics in di- and trilepton events from single-top production at the LHC and beyond , 2021, Physical Review D.

[31]  A. B. Kaliyar,et al.  Test of lepton flavor universality and search for lepton flavor violation in B → Kℓℓ decays , 2021, Journal of High Energy Physics.

[32]  G. Hiller,et al.  Top and beauty synergies in SMEFT-fits at present and future colliders , 2020, Journal of High Energy Physics.

[33]  C. Grojean,et al.  Positivity bounds on Minimal Flavor Violation , 2020, Journal of High Energy Physics.

[34]  Lian-tao Wang,et al.  Unambiguously Testing Positivity at Lepton Colliders. , 2020, Physical review letters.

[35]  Amal K. Ghosh,et al.  Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector , 2020, Journal of High Energy Physics.

[36]  Grant N. Remmen,et al.  Signs, spin, SMEFT: Sum rules at dimension six , 2020, Physical Review D.

[37]  Cen Zhang,et al.  Elastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatterings , 2020, 2009.04490.

[38]  B. Fuks,et al.  Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states , 2020, Chinese Physics C.

[39]  J. Ellis,et al.  Probing new physics in dimension-8 neutral gauge couplings at e+e− colliders , 2020, Science China Physics, Mechanics & Astronomy.

[40]  H. Gisbert,et al.  Lepton universality and lepton flavor conservation tests with dineutrino modes , 2020, The European Physical Journal C.

[41]  D. Stolarski,et al.  Constraining new physics with single top production at LHC , 2020, Journal of High Energy Physics.

[42]  Grant N. Remmen,et al.  Flavor Constraints from Unitarity and Analyticity. , 2020, Physical review letters.

[43]  R. Aoude,et al.  The impact of flavour data on global fits of the MFV SMEFT , 2020, Journal of High Energy Physics.

[44]  I. A. Monroy,et al.  Measurement of CP-Averaged Observables in the B , 2020 .

[45]  D. Faroughy,et al.  Lepton flavor violation and dilepton tails at the LHC , 2020, The European Physical Journal C.

[46]  M. Dorigo,et al.  Test of lepton universality with Λb0→pK−ℓ+ℓ− decays , 2019, 1912.08139.

[47]  T. Plehn,et al.  O new physics, where art thou? A global search in the top sector , 2019, Journal of High Energy Physics.

[48]  J. Erdmann,et al.  Constraining top-quark couplings combining top-quark and $$\varvec{B}$$ decay observables , 2019, The European Physical Journal C.

[49]  M. Frigerio,et al.  New physics in $$b\rightarrow s\ell \ell $$ transitions at one loop , 2019, The European Physical Journal C.

[50]  J. Zupan,et al.  Non-standard neutrino interactions and low energy experiments , 2019, Journal of High Energy Physics.

[51]  M. Vos,et al.  The electro-weak couplings of the top and bottom quarks — Global fit and future prospects , 2019, Journal of High Energy Physics.

[52]  Cen Zhang,et al.  Probing the top quark flavor-changing couplings at CEPC , 2019, Chinese Physics C.

[53]  W. Altmannshofer,et al.  Rare top decays as probes of flavorful Higgs bosons , 2019, Physical Review D.

[54]  Cen Zhang,et al.  Positivity constraints on aQGC: carving out the physical parameter space , 2019, Journal of High Energy Physics.

[55]  R. Coyne Signs , 2019, Peirce for Architects.

[56]  J. Ellis,et al.  Preprint typeset in JHEP style – Hyper Version Probing the Scale of New Physics in the ZZγ Coupling at e + e − Colliders , 2019 .

[57]  F. Maltoni,et al.  A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector , 2019, Journal of High Energy Physics.

[58]  Nicola De Filippis,et al.  Future Circular Collider : Vol. 1 Physics opportunities , 2018 .

[59]  D. Pappadopulo,et al.  New physics from high energy tops , 2018, Journal of High Energy Physics.

[60]  David M. Straub,et al.  flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond , 2018, 1810.08132.

[61]  C. Gottardo Search for charged lepton-flavour violation in top-quark decays at the LHC with the ATLAS detector , 2018, 1809.09048.

[62]  N. Kidonakis,et al.  Associated production of a top quark with a photon via anomalous couplings , 2018, Physical Review D.

[63]  Cen Zhang,et al.  Positivity bounds on vector boson scattering at the LHC , 2018, Physical Review D.

[64]  S. Davidson,et al.  Constraints on 2ℓ2q operators from μ↔e flavor-changing meson decays , 2018, Physical Review D.

[65]  M. Vreeswijk,et al.  Effective operators in t-channel single top production and decay , 2018, The European physical journal. C, Particles and fields.

[66]  F. Riva,et al.  New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes , 2018, Physical Review D.

[67]  J. E. Camargo-Molina,et al.  Anomalies in bottom from new physics in top , 2018, Physics Letters B.

[68]  F. Maltoni,et al.  Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation , 2018, Journal of High Energy Physics.

[69]  M. P. Casado,et al.  ATLAS document , 2017 .

[70]  Nicolas Produit,et al.  The P2 experiment , 2018, The European Physical Journal A.

[71]  P. Fox,et al.  Top-philic Z′ forces at the LHC , 2018, 1801.03505.

[72]  D. F. Kimball,et al.  Search for New Physics with Atoms and Molecules , 2017, 1710.01833.

[73]  L. A. Granado Cardoso,et al.  Test of lepton universality with B0 → K*0ℓ+ℓ− decays , 2017, Journal of High Energy Physics.

[74]  S. Klein,et al.  Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.

[75]  S. M. Etesami,et al.  Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at s=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepacka , 2017, Journal of High Energy Physics.

[76]  A. Greljo,et al.  High-$$p_T$$pT dilepton tails and flavor physics , 2017, 1704.09015.

[77]  J. Zupan,et al.  Lepton flavor universality violation without new sources of quark flavor violation , 2017, 1704.06005.

[78]  J. Virto,et al.  Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality , 2017, 1704.05672.

[79]  A. B. Kaliyar,et al.  Lepton-Flavor-Dependent Angular Analysis of B→K^{*}ℓ^{+}ℓ^{-}. , 2017, Physical review letters.

[80]  L. A. Granado Cardoso,et al.  Measurements of the S-wave fraction in B0 → K+π−μ+μ− decays and the B0 → K∗(892)0μ+μ− differential branching fraction , 2016, Journal of High Energy Physics.

[81]  Fabio Maltoni,et al.  Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD , 2016, 1607.05330.

[82]  David J. Miller,et al.  Constraining top quark effective theory in the LHC Run II era , 2016, Journal of High Energy Physics.

[83]  M. Schulze,et al.  Pinning down electroweak dipole operators of the top quark , 2016, 1603.08911.

[84]  Liam Moore,et al.  Constraining top quark effective theory in the LHC Run II era , 2015, 1512.03360.

[85]  Jason Aebischer,et al.  Matching of gauge invariant dimension-six operators for b → s and b → c transitions , 2015, 1512.02830.

[86]  S. Perries,et al.  Lepton flavour violating top decays at the LHC , 2015, The European physical journal. C, Particles and fields.

[87]  Gauthier Durieux,et al.  Global approach to top-quark flavor-changing interactions , 2014, 1412.7166.

[88]  Alan D. Martin,et al.  Parton distributions in the LHC era: MMHT 2014 PDFs , 2014, The European physical journal. C, Particles and fields.

[89]  V. Tioukine,et al.  The MOLLER Experiment: An Ultra-Precise Measurement of the Weak Mixing Angle Using M{\o}ller Scattering , 2014, 1411.4088.

[90]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[91]  M. Dorigo,et al.  Differential branching fractions and isospin asymmetries of B → K(*)μ+μ− decays , 2014, 1403.8044.

[92]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.

[93]  Nicola De Filippis,et al.  Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP , 2013 .

[94]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence , 2013, Journal of High Energy Physics.

[95]  M. C. Espirito Santo,et al.  Search for single top quark production via contact interactions at LEP2 , 2011, 1102.4455.

[96]  F. Maltoni,et al.  Non-resonant new physics in top pair production at hadron colliders , 2010, 1010.6304.

[97]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[98]  S. Willenbrock,et al.  Effective-field-theory approach to top-quark production and decay , 2010, 1008.3869.

[99]  S. Davidson,et al.  Constraints on two-lepton two-quark operators , 2010, 1008.0280.

[100]  J. G. Contreras,et al.  Search for single top quark production at HERA , 2009, 0904.3876.

[101]  S. Fajfer,et al.  Signatures of NP models in top FCNC decay t → c(u)ℓ+ℓ− , 2008, 0812.0294.

[102]  L. Vecchi Causal vs. analytic constraints on anomalous quartic gauge couplings , 2007, 0704.1900.

[103]  P. Fox,et al.  Deciphering Top Flavor Violation at the LHC with B Factories , 2007, 0704.1482.

[104]  B. Grinstein,et al.  Falsifying models of new physics via WW scattering. , 2006, Physical review letters.

[105]  R. Rattazzi,et al.  Causality, analyticity and an IR obstruction to UV completion , 2006, hep-th/0602178.

[106]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[107]  J. A. Aguilar-Saavedra Top flavor-changing neutral interactions: Theoretical expectations and experimental detection , 2004, hep-ph/0409342.

[108]  Z. A. Ibrahim,et al.  Search for single-top production in ep collisions at HERA , 2003, 1111.3901.

[109]  L3 Collaboration Search for single top production at LEP , 2002, Physics Letters B.

[110]  J. Wudka,et al.  Flavor changing single top quark production channels at e+ e- colliders in the effective Lagrangian description , 1999, hep-ph/9905407.

[111]  C. E. Wieman,et al.  Measurement of Parity Nonconservation and an Anapole Moment in Cesium , 1997, Science.

[112]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[113]  I. Gorelov,et al.  Tests of Lepton Universality Using B 0 → K 0 S l + l − and B + → K (cid:1) + l + l − Decays , 2022 .

[114]  I. Gorelov,et al.  Branching Fraction Measurements of the Rare B 0 s → ϕμ + μ − and B 0 s → f 0 2 ð 1525 Þ μ + μ − Decays , 2021 .

[115]  J. Erdmann,et al.  Constraining top-quark couplings combining top-quark and B decay observables , 2020 .

[116]  M. Frigerio,et al.  New physics in b→ s`` transitions at one loop , 2019 .

[117]  Cen 岑 Zhang 张,et al.  Probing the top quark flavor-changing couplings at CEPC , 2019 .