Consistencies and Contradictions of Performance Metrics in Multiobjective Optimization

An important consideration of multiobjective optimization (MOO) is the quantitative metrics used for defining the optimality of different solution sets, which is also the basic principle for the design and evaluation of MOO algorithms. Although a plethora of performance metrics have been proposed in the MOO context, there has been a lack of insights on the relationships between metrics. In this paper, we first group the major MOO metrics proposed to date according to four core performance criteria considered in the literature, namely, capacity, convergence, diversity, and convergence-diversity. Then, a comprehensive study is conducted to investigate the relationships among representative group metrics, including generational distance, E-indicator (I1∈+), spread (Δ), generalized spread (Δ*), inverted generational distance, and hypervolume. Experimental results indicated that these six metrics show high consistencies when Pareto fronts (PFs) are convex, whereas they show certain contradictions on concave PFs.

[1]  Pramod K. Varshney,et al.  A Multiobjective Optimization Approach to Obtain Decision Thresholds for Distributed Detection in Wireless Sensor Networks , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Kay Chen Tan,et al.  Noise-induced features in robust multi-objective optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[3]  Hussein A. Abbass,et al.  I. Background , 2022 .

[4]  Nicola Beume,et al.  Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  Hisao Ishibuchi,et al.  Guest editorial: Memetic Algorithms for Evolutionary Multi-Objective Optimization , 2010, Memetic Comput..

[6]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[7]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[8]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[9]  A. Farhang-Mehr,et al.  Diversity assessment of Pareto optimal solution sets: an entropy approach , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[11]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[12]  Gideon Avigad,et al.  Interactive Evolutionary Multiobjective Search and Optimization of Set-Based Concepts , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[14]  Xin Yao,et al.  Multi-Objective Approaches to Optimal Testing Resource Allocation in Modular Software Systems , 2010, IEEE Transactions on Reliability.

[15]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[16]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[17]  Jiang Siwei,et al.  Multiobjective optimization by decomposition with Pareto-adaptive weight vectors , 2011, 2011 Seventh International Conference on Natural Computation.

[18]  Jie Zhang,et al.  A multiagent evolutionary framework based on trust for multiobjective optimization , 2012, AAMAS.

[19]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  Enrique Alba,et al.  The jMetal framework for multi-objective optimization: Design and architecture , 2010, IEEE Congress on Evolutionary Computation.

[21]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[22]  Sanghamitra Bandyopadhyay,et al.  Multiobjective Simulated Annealing for Fuzzy Clustering With Stability and Validity , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[23]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[24]  Lucas Bradstreet,et al.  A Fast Way of Calculating Exact Hypervolumes , 2012, IEEE Transactions on Evolutionary Computation.

[25]  Jie Zhang,et al.  Asymmetric Pareto-adaptive Scheme for Multiobjective Optimization , 2011, Australasian Conference on Artificial Intelligence.

[26]  Lishan Kang,et al.  A New Evolutionary Algorithm for Solving Many-Objective Optimization Problems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[28]  Kay Chen Tan,et al.  A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[30]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[31]  Shapour Azarm,et al.  Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set , 2001 .

[32]  Qingfu Zhang,et al.  Combining Model-based and Genetics-based Offspring Generation for Multi-objective Optimization Using a Convergence Criterion , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[33]  Yaochu Jin,et al.  A Critical Survey of Performance Indices for Multi-Objective Optimisation , 2003 .

[34]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[35]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[36]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[37]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[38]  Tong Heng Lee,et al.  Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons , 2004, Artificial Intelligence Review.

[39]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[40]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[41]  Gary G. Yen,et al.  Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[42]  Lucas Bradstreet,et al.  The hypervolume indicator for multi-objective optimisation: calculation , 2011 .

[43]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[44]  Xin Yao,et al.  Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem , 2011, IEEE Transactions on Evolutionary Computation.

[45]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[46]  Bernhard Sendhoff,et al.  Multi co-objective evolutionary optimization: Cross surrogate augmentation for computationally expensive problems , 2012, 2012 IEEE Congress on Evolutionary Computation.

[47]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[48]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[49]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[50]  Jun Zhang,et al.  A multi-objective evolutionary approach to aircraft landing scheduling problems , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[51]  Ivor W. Tsang,et al.  Pareto Rank Learning in Multi-objective Evolutionary Algorithms , 2012, 2012 IEEE Congress on Evolutionary Computation.

[52]  Sanghamitra Bandyopadhyay,et al.  Multiobjective GAs, quantitative indices, and pattern classification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[53]  Yuren Zhou,et al.  Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[54]  Ganesh K. Venayagamoorthy,et al.  Particle Swarm Optimization in Wireless-Sensor Networks: A Brief Survey , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[55]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[56]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[57]  Gary G. Yen,et al.  PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[58]  Xin Yao,et al.  A multi-objective approach to Redundancy Allocation Problem in parallel-series systems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[59]  Carlos A. Coello Coello,et al.  Analysis of leader selection strategies in a multi-objective Particle Swarm Optimizer , 2013, 2013 IEEE Congress on Evolutionary Computation.

[60]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[61]  Lucas Bradstreet,et al.  Applying the WFG algorithm to calculate incremental hypervolumes , 2012, 2012 IEEE Congress on Evolutionary Computation.

[62]  Tobias Friedrich,et al.  Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice , 2009, EMO.

[63]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[64]  Gary G. Yen,et al.  Cultural-Based Multiobjective Particle Swarm Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[65]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[66]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[67]  Hisao Ishibuchi,et al.  Simultaneous use of different scalarizing functions in MOEA/D , 2010, GECCO '10.

[68]  Jürgen Teich,et al.  A New Approach on Many Objective Diversity Measurement , 2005, Practical Approaches to Multi-Objective Optimization.

[69]  Kay Chen Tan,et al.  An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization , 2007, IEEE Transactions on Evolutionary Computation.