Computing the Hilbert class field of real quadratic fields

Using the units appearing in Stark's conjectures on the values of L-functions at s=0, we give a complete algorithm for computing an explicit generator of the Hilbert class field of a real quadratic field.

[1]  I. N. Sneddon The use of integral transforms , 1972 .

[2]  石田 信 The genus fields of algebraic number fields , 1976 .

[3]  R. Terras Generalized exponential operators in the continuation of the confluent hypergeometric functions , 1981 .

[4]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[5]  H. Stark Values of L-Functions at s = 1 I. L-Functions for quadratic forms , 1971 .

[6]  Henri Cohen,et al.  Computing ray class groups, conductors and discriminants , 1996, Math. Comput..

[7]  M. Rosen,et al.  A note on the splitting of the Hilbert class field , 1988 .

[8]  Michael E. Pohst,et al.  On Computing Subfields , 1997, J. Symb. Comput..

[9]  Xiang-Sun Zhang,et al.  A note on the continuity of solutions of parametric linear programs , 1990, Math. Program..

[10]  E. Friedman Hecke's integral formula , 1988 .

[11]  Michael E. Pohst,et al.  Computations with relative extensions of number fields with an application to the construction of Hilbert class fields , 1995, ISSAC '95.

[12]  Claus Fieker,et al.  Computing class fields via the Artin map , 2001, Math. Comput..

[13]  H. Stark L-functions at s = 1. IV. First derivatives at s = 0 , 1980 .

[14]  A. Fröhlich LES CONJECTURES DE STARK SUR LES FONCTIONS L d'ARTIN EN s = 0 (Progress in Mathematics, 47) , 1985 .

[15]  H. Cohen A course in computational number theory , 1993 .

[16]  L-functions at s = 1. III. Totally real fields and Hilbert's twelfth problem , 1976 .

[17]  Brett A. Tangedal,et al.  Computing the Lead Term of an Abelian L-function , 1998, ANTS.

[18]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[19]  Eric Bach,et al.  Explicit bounds for primes in residue classes , 1996, Math. Comput..

[20]  Bahman Zohuri,et al.  A general method for an accurate evaluation of exponential integrals E1(x), x > 0☆ , 1977 .

[21]  Xavier-François Roblot Stark's Conjectures and Hilbert's Twelfth Problem , 2000, Exp. Math..

[22]  Henri Cohen,et al.  A polynomial reduction algorithm , 1991 .

[23]  Michael Pohst,et al.  On Computing Subelds , 1997 .

[24]  R. Terras The determination of incomplete gamma functions through analytic integration , 1979 .

[25]  D. Bressoud,et al.  A Course in Computational Number Theory , 2000 .

[26]  Reinhard Schertz Problèmes de construction en multiplication complexe , 1992 .