Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications

A novel approach, to our knowledge, for the fabrication of metallic micro- and nanostructures based on femtosecond laser-induced transfer of metallic nanodroplets is developed. The controllable fabrication of high-quality spherical gold micro- and nanoparticles with radius of 100-800 nm is realized. In combination with the two-photon polymerization technique, this approach provides unique possibilities for the realization of plasmonic components and metamaterials. Polymer woodpile structures filled with gold nanoparticles are demonstrated. Scattering of surface plasmon polaritons on an individual spherical gold nanoparticle fabricated by the proposed method is investigated. The obtained results are supported by a numerical modeling using the Green's tensor approach.

[1]  A. Kuznetsov,et al.  Laser-induced backward transfer of gold nanodroplets. , 2009, Optics express.

[2]  Boris N. Chichkov,et al.  Materials processing: Two-photon fabrication , 2009 .

[3]  Y. Fainman,et al.  Optical waves on nanoparticle chains coupled with surfaces. , 2009, Optics letters.

[4]  E. Ozbay The Magical World of Photonic Metamaterials , 2008 .

[5]  A. Boltasseva,et al.  Refracting Surface Plasmons with Nanoparticle Arrays , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[6]  Aiko Narazaki,et al.  Nano- and Microdot Array Formation of FeSi2 by Nanosecond Excimer Laser-Induced Forward Transfer , 2008 .

[7]  Igor Tsukerman,et al.  Electrodynamic effects in plasmonic nanolenses , 2008 .

[8]  C. Rockstuhl,et al.  A metamaterial based on coupled metallic nanoparticles and its band‐gap property , 2008, Journal of microscopy.

[9]  B N Chichkov,et al.  Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. , 2007, Optics express.

[10]  E. Michielssen,et al.  Optical wave properties of nano-particle chains coupled with a metal surface. , 2007, Optics express.

[11]  F. García-Vidal,et al.  Surface plasmon polariton scattering by finite-size nanoparticles , 2007 .

[12]  Alexandra Boltasseva,et al.  Surface plasmon polariton beam focusing with parabolic nanoparticle chains. , 2007, Optics express.

[13]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[14]  Ioanna Zergioti,et al.  Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer , 2006 .

[15]  L. Chai,et al.  Microdroplet deposition of copper film by femtosecond laser-induced forward transfer , 2006 .

[16]  Sergey I. Bozhevolnyi,et al.  Splitting of a surface plasmon polariton beam by chains of nanoparticles , 2006 .

[17]  A. Boardman,et al.  Nonradiating and radiating configurations driven by left-handed metamaterials , 2005, physics/0511113.

[18]  J. Hvam,et al.  Propagation of long-range surface plasmon polaritons in photonic crystals , 2005 .

[19]  A. Boardman,et al.  Negative Refraction in Perspective , 2005, cond-mat/0508501.

[20]  Harald Ditlbacher,et al.  Quantitative analysis of surface plasmon interaction with silver nanoparticles. , 2005, Optics letters.

[21]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[22]  Sergey I. Bozhevolnyi,et al.  Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations , 2005 .

[23]  Vicentiu Grosu,et al.  Microdroplet deposition by laser-induced forward transfer , 2005, SPIE LASE.

[24]  S. Bozhevolnyi,et al.  Theoretical analysis of finite-size surface plasmon polariton band-gap structures , 2005 .

[25]  David J. Bergman,et al.  Surface plasmon amplification by stimulated emission in nanolenses , 2005 .

[26]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[27]  S. Bozhevolnyi,et al.  Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study , 2004 .

[28]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[29]  J. Pendry,et al.  Optics: Positively negative , 2003, Nature.

[30]  Viktor Podolskiy,et al.  Plasmon modes and negative refraction in metal nanowire composites. , 2003, Optics express.

[31]  I. Chuang,et al.  Experimental observations of a left-handed material that obeys Snell's law. , 2003, Physical review letters.

[32]  A. Requicha,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[33]  A. Hohenau,et al.  Surface plasmon micro‐ and nano‐optics , 2003, Journal of microscopy.

[34]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[35]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[36]  M. Paulus,et al.  Light propagation and scattering in stratified media: a Green’s tensor approach , 2001 .

[37]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[38]  J. Kottmann,et al.  Accurate solution of the volume integral equation for high-permittivity scatterers , 2000 .

[39]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[40]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[41]  Costas Fotakis,et al.  Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films , 1999 .

[42]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[43]  Costas Fotakis,et al.  Microdeposition of metals by femtosecond excimer laser , 1998 .

[44]  A. Dereux,et al.  Near-field optics theories , 1996 .

[45]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[46]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[47]  V. Shalaev Optical negative-index metamaterials , 2007 .