GPU-based roofs' solar potential estimation using LiDAR data

Solar potential estimation using LiDAR data is an efficient approach for finding suitable roofs for photovoltaic systems' installations. As the amount of LiDAR data increases, the non-parallel methods take considerable time to accurately estimate the solar potential. Although supercomputing provides a possible solution, it is still too expensive and thus infeasible for general usage. Fortunately, the recent graphics processing units (GPUs) can now be utilized to ensure fast computations. This paper proposes a novel method for fast solar potential estimation using GPU-based CUDA technology. This method employs LiDAR data, irradiance measurements, multiresolutional shadowing from solid objects, and heuristic shadowing from vegetation. Experimental results demonstrate the method's effectiveness, in comparison with a multi-core CPU-based approach.

[1]  M. Hollaus,et al.  OBJECT DETECTION IN AIRBORNE LIDAR DATA FOR IMPROVED SOLAR RADIATION MODELING IN URBAN AREAS , 2009 .

[2]  J. Tovar-Pescador,et al.  A comparative analysis of DEM‐based models to estimate the solar radiation in mountainous terrain , 2009, Int. J. Geogr. Inf. Sci..

[3]  Pejman Tahmasebi,et al.  Accelerating geostatistical simulations using graphics processing units (GPU) , 2012, Comput. Geosci..

[4]  Kiyun Yu,et al.  Parallel Processing Method for Airborne Laser Scanning Data Using a PC Cluster and a Virtual Grid , 2009, Sensors.

[5]  Claudio Gheller,et al.  High-performance astrophysical visualization using Splotch , 2010, ICCS.

[6]  P. Rich,et al.  A geometric solar radiation model with applications in agriculture and forestry , 2002 .

[7]  Chaitanya K. Baru,et al.  Evaluation of MapReduce for Gridding LIDAR Data , 2010, 2010 IEEE Second International Conference on Cloud Computing Technology and Science.

[8]  Zhiqiang Xiao,et al.  Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling , 2011 .

[9]  J. Dungan,et al.  Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration , 2012 .

[10]  J. Kaňuk,et al.  Assessment of photovoltaic potential in urban areas using open-source solar radiation tools , 2009 .

[11]  Jianping Wu,et al.  Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LIDAR data and a solar flux model: a case study of downtown Houston , 2009 .

[12]  Guang Zheng,et al.  Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors , 2009, Sensors.

[13]  Ha T. Nguyen,et al.  Quantifying Rooftop Solar Photovoltaic Potential for Regional Renewable Energy Policy , 2010, Comput. Environ. Urban Syst..

[14]  Peter Bailey,et al.  Accelerating geoscience and engineering system simulations on graphics hardware , 2009, Comput. Geosci..

[15]  P. Cooper The absorption of radiation in solar stills , 1969 .

[16]  Richard Healey,et al.  Parallel Processing Algorithms for GIS , 1997 .

[17]  Antonio J. Rueda Ruiz,et al.  Parallel drainage network computation on CUDA , 2010, Comput. Geosci..

[18]  Javier G. Corripio,et al.  Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain , 2003, Int. J. Geogr. Inf. Sci..

[19]  Paul Gray,et al.  LiDAR data reduction using vertex decimation and processing with GPGPU and multicore CPU technology , 2012, Comput. Geosci..

[20]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[21]  Ivana Kolingerová,et al.  Optimistic parallel Delaunay triangulation , 2002, The Visual Computer.

[22]  Edward D. Lazowska,et al.  Speedup Versus Efficiency in Parallel Systems , 1989, IEEE Trans. Computers.

[23]  E. Dunlop,et al.  Potential of solar electricity generation in the European Union member states and candidate countries , 2007 .

[24]  Pankaj K. Agarwal,et al.  Natural neighbor interpolation based grid DEM construction using a GPU , 2010, GIS '10.

[25]  Ralph Dubayah,et al.  Topographic Solar Radiation Models for GIS , 1995, Int. J. Geogr. Inf. Sci..

[26]  Lalit Kumar,et al.  Modelling Topographic Variation in Solar Radiation in a GIS Environment , 1997, Int. J. Geogr. Inf. Sci..

[27]  Barbara Koch,et al.  Exploring full-waveform LiDAR parameters for tree species classification , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[28]  Lianghui Guo,et al.  GICUDA: A parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA , 2012, Comput. Geosci..

[29]  Eberhard Steinle,et al.  Airborne laserscanning data for determination of suitable areas for photovoltaics , 2005 .

[30]  Joshua M. Pearce,et al.  Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale , 2012, Solar Energy.

[31]  I. Reda,et al.  Solar position algorithm for solar radiation applications , 2004 .

[32]  N. Coops,et al.  Tree structure influences on rooftop-received solar radiation , 2011 .

[33]  M. Ninyerola,et al.  Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data , 2008 .

[34]  Mathias Steinbach,et al.  Accelerating batch processing of spatial raster analysis using GPU , 2012, Comput. Geosci..

[35]  R. Kassner,et al.  ANALYSIS OF THE SOLAR POTENTIAL OF ROOFS BY USING OFFICIAL LIDAR DATA , 2008 .

[36]  Melvin Pomerantz,et al.  Solar access of residential rooftops in four California cities , 2009 .

[37]  Jaroslav Hofierka,et al.  A New GIS‐based Solar Radiation Model and Its Application to Photovoltaic Assessments , 2004, Trans. GIS.

[38]  J. W. Palmer,et al.  A Simple Model of Light Transmission and Interception by Discontinuous Canopies , 1979 .

[39]  Norbert Pfeifer,et al.  Automatic Roof Plane Detection and Analysis in Airborne Lidar Point Clouds for Solar Potential Assessment , 2009, Sensors.

[40]  F. J. Barnes,et al.  Hetrick, W.A., P.M. Rich, F.J. Barnes, and S.B. Weiss. 1993. GIS-based solar radiation flux models. American Society for Photogrammetry and Remote Sensing Technical Papers. Vol 3, GIS. Photogrammetry, and Modeling. pp 132-143. GIS-BASED SOLAR RADIATION FLUX MODELS , 1993 .

[41]  Martin Rutzinger,et al.  Extraction of Vertical Walls from Mobile Laser Scanning Data for Solar Potential Assessment , 2011, Remote. Sens..

[42]  Domen Mongus,et al.  Parameter-free ground filtering of LiDAR data for automatic DTM generation , 2012 .

[43]  P. I. Cooper,et al.  Some factors affecting the absorption of solar radiation in solar stills , 1972 .

[44]  G. Štumberger,et al.  Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data , 2013 .

[45]  J. Randerson,et al.  Technical Description of version 4.0 of the Community Land Model (CLM) , 2010 .

[46]  H. Sinoquet,et al.  Simple equations to estimate light interception by isolated trees from canopy structure features: assessment with three-dimensional digitized apple trees. , 2007, The New phytologist.