Emergence of Physiological Oscillation Frequencies in a Computer Model of Neocortex

Coordination of neocortical oscillations has been hypothesized to underlie the “binding” essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular roles in generating oscillations, adding different dynamics to the network. We simulated networks from sensory neocortex using nine columns of event-driven rule-based neurons wired according to anatomical data and driven with random white-noise synaptic inputs. We tuned the network to achieve realistic cell firing rates and to avoid population spikes. A physiological frequency spectrum appeared as an emergent property, displaying dominant frequencies that were not present in the inputs or in the intrinsic or activated frequencies of any of the cell groups. We monitored spectral changes while using minimal dynamical perturbation as a methodology through gradual introduction of hubs into individual layers. We found that hubs in layer 2/3 excitatory cells had the greatest influence on overall network activity, suggesting that this subpopulation was a primary generator of theta/beta strength in the network. Similarly, layer 2/3 interneurons appeared largely responsible for gamma activation through preferential attenuation of the rest of the spectrum. The network showed evidence of frequency homeostasis: increased activation of supragranular layers increased firing rates in the network without altering the spectral profile, and alteration in synaptic delays did not significantly shift spectral peaks. Direct comparison of the power spectra with experimentally recorded local field potentials from prefrontal cortex of awake rat showed substantial similarities, including comparable patterns of cross-frequency coupling.

[1]  Emery N. Brown,et al.  Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena , 2006, Biological Cybernetics.

[2]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[3]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[4]  J. T. Francis,et al.  Electrostimulation as a Prosthesis for Repair of Information Flow in a Computer Model of Neocortex , 2012, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[6]  Heekyung Lee,et al.  Interictal EEG Discoordination in a Rat Seizure Model , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[7]  Ioannis G. Tollis,et al.  Circular Drawings of Biconnected Graphs , 1999, ALENEX.

[8]  N. Burgess,et al.  Brain oscillations and memory , 2010, Current Opinion in Neurobiology.

[9]  Todd P. Coleman,et al.  Estimating the directed information to infer causal relationships in ensemble neural spike train recordings , 2010, Journal of Computational Neuroscience.

[10]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  William W. Lytton,et al.  A rule-based firing model for neural networks , 2005 .

[12]  L. Tsimring,et al.  Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. , 2007, Journal of neurophysiology.

[13]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[14]  A. Treisman The binding problem , 1996, Current Opinion in Neurobiology.

[15]  Kaspar Anton Schindler,et al.  Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. , 2006, Brain : a journal of neurology.

[16]  Anders Lansner,et al.  Bistable, Irregular Firing and Population Oscillations in a Modular Attractor Memory Network , 2010, PLoS Comput. Biol..

[17]  Y. Isomura,et al.  Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. , 2006, Journal of neurophysiology.

[18]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[19]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[20]  K. Rockland,et al.  Some thoughts on cortical minicolumns , 2004, Experimental Brain Research.

[21]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[22]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[23]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[24]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[25]  Gustavo Deco,et al.  Optimal Information Transfer in the Cortex through Synchronization , 2010, PLoS Comput. Biol..

[26]  Pierre Baldi,et al.  On the Use of Bayesian Methods for Evaluating Compartmental Neural Models , 1998, Journal of Computational Neuroscience.

[27]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[28]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[29]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[30]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[31]  Kevan A. C. Martin,et al.  Whose Cortical Column Would that Be? , 2010, Front. Neuroanat..

[32]  Sacha Jennifer van Albada,et al.  Neurophysiological changes with age probed by inverse modeling of EEG spectra , 2010, Clinical Neurophysiology.

[33]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[34]  C. Malsburg Binding in models of perception and brain function , 1995, Current Opinion in Neurobiology.

[35]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[36]  R. Douglas,et al.  Recurrent neuronal circuits in the neocortex , 2007, Current Biology.

[37]  Taro Kiritani,et al.  Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex , 2010, Nature Neuroscience.

[38]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Karim Oweiss,et al.  Reconstructing functional neuronal circuits using dynamic Bayesian networks , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[40]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[41]  R. Morgan,et al.  Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures , 2008, Proceedings of the National Academy of Sciences.

[42]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[43]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[44]  Karl J. Friston,et al.  Dynamic causal modelling of induced responses , 2008, NeuroImage.

[45]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[46]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[47]  William W Lytton,et al.  Data mining through simulation. , 2007, Methods in molecular biology.

[48]  William W Lytton,et al.  Tonic-Clonic Transitions in Computer Simulation , 2007, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[49]  T. Sejnowski,et al.  Model of Thalamocortical Slow-Wave Sleep Oscillations and Transitions to Activated States , 2002, The Journal of Neuroscience.

[50]  Ioannis G. Tollis,et al.  A Framework for Circular Drawings of Networks , 1999, GD.

[51]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[52]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[53]  Ch. von der Malsburg,et al.  A neural cocktail-party processor , 1986, Biological Cybernetics.

[54]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[55]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000, Softw. Pract. Exp..

[56]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[57]  G. Buzsáki,et al.  Interaction between neocortical and hippocampal networks via slow oscillations. , 2005, Thalamus & related systems.

[58]  Andrey V. Olypher,et al.  Cognitive Disorganization in Hippocampus: A Physiological Model of the Disorganization in Psychosis , 2006, The Journal of Neuroscience.

[59]  S. Strogatz Exploring complex networks , 2001, Nature.

[60]  William W. Lytton Optimizing Synaptic Conductance Calculation for Network Simulations , 1996, Neural Computation.

[61]  O. Jensen,et al.  Frontal theta activity in humans increases with memory load in a working memory task , 2002, The European journal of neuroscience.

[62]  J. Palva,et al.  Phase Synchrony among Neuronal Oscillations in the Human Cortex , 2005, The Journal of Neuroscience.

[63]  W. Lytton,et al.  Local axon collaterals of area CA1 support spread of epileptiform discharges within CA1, but propagation is unidirectional , 2008, Hippocampus.

[64]  S. Raghavachari,et al.  Gating of Human Theta Oscillations by a Working Memory Task , 2001, The Journal of Neuroscience.

[65]  M. Steriade Neocortical cell classes are flexible entities , 2004, Nature Reviews Neuroscience.

[66]  J E Lisman,et al.  Theta oscillations in human cortex during a working-memory task: evidence for local generators. , 2006, Journal of neurophysiology.

[67]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[68]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[69]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[70]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[71]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[72]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[73]  William W. Lytton,et al.  Data-Mining of Time-Domain Features from Neural Extracellular Field Data , 2008, Computational Intelligence in Biomedicine and Bioinformatics.

[74]  S. Bressler,et al.  Stochastic modeling of neurobiological time series: power, coherence, Granger causality, and separation of evoked responses from ongoing activity. , 2006, Chaos.

[75]  Lester Melie-García,et al.  Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory , 2008, NeuroImage.

[76]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[77]  Tomás Paus,et al.  Inferring causality in brain images: a perturbation approach , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[78]  Giulio Tononi,et al.  Modeling sleep and wakefulness in the thalamocortical system. , 2005, Journal of neurophysiology.

[79]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[80]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[81]  J. Lisman Working Memory: The Importance of Theta and Gamma Oscillations , 2010, Current Biology.

[82]  William W. Lytton,et al.  Rule-based firing for network simulations , 2006, Neurocomputing.

[83]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[84]  Anil K. Seth,et al.  Causal networks in simulated neural systems , 2008, Cognitive Neurodynamics.

[85]  Matthäus Staniek,et al.  Measuring Synchronization in the Epileptic Brain: a Comparison of Different Approaches , 2007, Int. J. Bifurc. Chaos.

[86]  M L Hines,et al.  Neuron: A Tool for Neuroscientists , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[87]  Michael E. Hasselmo,et al.  Dynamics and Function of a CA1 Model of the Hippocampus during Theta and Ripples , 2010, ICANN.

[88]  W. Singer Consciousness and the Binding Problem , 2001, Annals of the New York Academy of Sciences.

[89]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[90]  William W. Lytton,et al.  Synaptic information transfer in computer models of neocortical columns , 2011, Journal of Computational Neuroscience.

[91]  T. Sejnowski,et al.  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. , 1991, Journal of neurophysiology.

[92]  S. Nelson ReportCortical Microcircuits : Diverse or Canonical ? neuron and another ? , 2002 .

[93]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[94]  W. Lytton Computer modelling of epilepsy , 2008, Nature Reviews Neuroscience.

[95]  Rainer Goebel,et al.  Mapping directed influence over the brain using Granger causality and fMRI , 2005, NeuroImage.

[96]  M. Stewart,et al.  Do septal neurons pace the hippocampal theta rhythm? , 1990, Trends in Neurosciences.

[97]  Jianing Yu,et al.  Top-down laminar organization of the excitatory network in motor cortex , 2008, Nature Neuroscience.

[98]  Fivos Panetsos,et al.  A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings , 2005, Journal of Neuroscience Methods.

[99]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[100]  G. Ermentrout,et al.  Gamma rhythms and beta rhythms have different synchronization properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[101]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[102]  W. Gerstner,et al.  Connectivity reflects coding: a model of voltage-based STDP with homeostasis , 2010, Nature Neuroscience.

[103]  H. Tamura,et al.  Regional and laminar differences in in vivo firing patterns of primate cortical neurons. , 2005, Journal of neurophysiology.

[104]  R. Muller,et al.  Attention-Like Modulation of Hippocampus Place Cell Discharge , 2010, The Journal of Neuroscience.

[105]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[106]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[107]  R. McCarley,et al.  Neural synchrony indexes disordered perception and cognition in schizophrenia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[108]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[109]  Michael L. Hines,et al.  The virtual slice setup , 2008, Journal of Neuroscience Methods.

[110]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[111]  Juan Zhou,et al.  Learning effective brain connectivity with dynamic Bayesian networks , 2007, NeuroImage.

[112]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[113]  A. Fenton,et al.  Dynamic Grouping of Hippocampal Neural Activity During Cognitive Control of Two Spatial Frames , 2010, PLoS biology.

[114]  E Fransén,et al.  A model of cortical associative memory based on a horizontal network of connected columns. , 1998, Network.

[115]  K. Lehnertz,et al.  Synchronization phenomena in human epileptic brain networks , 2009, Journal of Neuroscience Methods.

[116]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.

[117]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[118]  R. McCarley,et al.  Abnormal Neural Synchrony in Schizophrenia , 2003, The Journal of Neuroscience.

[119]  Jakob Heinzle,et al.  A Microcircuit Model of the Frontal Eye Fields , 2007, The Journal of Neuroscience.

[120]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[121]  Michel A. Picardo,et al.  GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks , 2009, Science.

[122]  Mingzhou Ding,et al.  From Prestimulus Alpha Oscillation to Visual-evoked Response: An Inverted-U Function and Its Attentional Modulation , 2011, Journal of Cognitive Neuroscience.

[123]  Michael L. Hines,et al.  Just-in-Time Connectivity for Large Spiking Networks , 2008, Neural Computation.