E-Characteristic Polynomials of Tensors
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] P. Goldbart,et al. Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.
[3] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[4] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[5] Liqun Qi,et al. Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines , 2006, J. Symb. Comput..
[6] L. Qi,et al. The degree of the E-characteristic polynomial of an even order tensor , 2007 .
[7] L. Qi. Eigenvalues and invariants of tensors , 2007 .
[8] Luke Bloy,et al. On Computing the Underlying Fiber Directions from the Diffusion Orientation Distribution Function , 2008, MICCAI.
[9] Fei Wang,et al. Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..
[10] V. Balan,et al. Applications of resultants in the spectral m-root framework , 2010 .
[11] Anthony Sudbery,et al. The geometric measure of multipartite entanglement and the singular values of a hypermatrix , 2010 .
[12] L. Qi,et al. Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..
[13] Liqun Qi,et al. The Best Rank-One Approximation Ratio of a Tensor Space , 2011, SIAM J. Matrix Anal. Appl..
[14] T. Zhang. Existence of real eigenvalues of real tensors , 2011 .
[15] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[16] V. Balan. Spectra of symmetric tensors and m-root Finsler models , 2012 .
[17] Liqun Qi,et al. Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..