Effects of basis set and electron correlation on the calculated interaction energies of hydrogen bonding complexes: MP2/cc-pV5Z calculations of H2O–MeOH,H2O–Me2O,H2O–H2CO, MeOH–MeOH, and HCOOH–HCOOH complexes

The MP2 intermolecular interaction energies of the title complexes were calculated with the Dunning’s correlation consistent basis sets (cc-pVXZ, X=D, T, Q, and 5) and the interaction energies at the basis set limit were estimated. The second-order Mo/ller–Plesset (MP2) interaction energies greatly depend on the basis sets used, while the Hartree–Fock (HF) energies do not. Small basis sets considerably underestimate the attractive interaction. The coupled cluster single double triple [CCSD(T)] interaction energies are close to the MP2 ones. The expected CCSD(T) interaction energies of the H2O–MeOH, H2O–Me2O, H2O–H2CO, MeOH–MeOH, and HCOOH–HCOOH complexes at the basis set limit are −4.90, −5.51, −5.17, −5.45, and −13.93 kcal/mol, respectively, while the HF/cc-pV5Z energies are −3.15, −2.58, −3.60, −2.69, and −11.29 kcal/mol, respectively. The HF calculations greatly underestimate the attractive energies and fail to predict the order of the bonding energies in these complexes. These results show that a larg...

[1]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[2]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[3]  J. Perchard,et al.  Infrared photoisomerization of the methanol dimer trapped in argon matrix: monochromatic irradiation experiments and DFT calculations , 1997 .

[4]  P. Ugliengo,et al.  Relative propensity of methanol and silanol towards hydrogen bond formation , 1992 .

[5]  H. Schaefer,et al.  CARBONYL-WATER HYDROGEN BONDING : THE H2CO-H2O PROTOTYPE , 1994 .

[6]  L. A. Curtiss,et al.  Thermodynamic properties of gas-phase hydrogen-bonded complexes , 1988 .

[7]  E. Davidson,et al.  The water dimer: correlation energy calculations , 1993 .

[8]  Kazutoshi Tanabe,et al.  Basis set effects on the intermolecular interaction energies of methane dimers obtained by the Moeller-Plesset perturbation theory calculation , 1991 .

[9]  J. R. Damewood,et al.  Interaction of formaldehyde with water , 1989 .

[10]  Masuhiro Mikami,et al.  NEW MEDIUM-SIZE BASIS SETS TO EVALUATE THE DISPERSION INTERACTION OF HYDROCARBON MOLECULES , 1998 .

[11]  B. Rode,et al.  Intermolecular potential function for methanol dimer interactions from ab initio calculations , 1992 .

[12]  M. Yáñez,et al.  High level ab initio and density functional theory studies on methanol–water dimers and cyclic methanol(water)2 trimer , 1998 .

[13]  Richard L. Jaffe,et al.  A quantum chemistry study of benzene dimer , 1996 .

[14]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[15]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[16]  José Elguero,et al.  Study of the methanol trimer potential energy surface , 1997 .

[17]  Michel Masella,et al.  Relation between cooperative effects in cyclic water, methanol/water, and methanol trimers and hydrogen bonds in methanol/water, ethanol/water, and dimethylether/water heterodimers , 1998 .

[18]  S. Peyerimhoff,et al.  Theoretical study of hydrogen-bonded formaldehyde-water complexes , 1993 .

[19]  Modesto Orozco,et al.  Molecular Solvation Potential. A New Tool for the Quantum Mechanical Description of Hydration in Organic and Bioorganic Molecules , 1995 .

[20]  David Feller,et al.  Hydrogen bond energy of the water dimer , 1996 .

[21]  Y. Dimitrova Solvent effects on vibrational spectra of hydrogen-bonded complexes of formaldehyde and water: an ab initio study , 1997 .

[22]  J. D. Bene Theoretical Study of Open Chain Dimers and Trimers Containing CH3OH and H2O , 1971 .

[23]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[24]  S. Scheiner Bent Hydrogen Bonds and Proton Transfers , 1994 .

[25]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[26]  H. Desseyn,et al.  Modelling the vibrational behaviour of the cyclic carboxylic acid dimer. SQM force field of the formic acid dimer , 1996 .

[27]  Jiali Gao,et al.  Optimization of the Lennard‐Jones parameters for a combined ab initio quantum mechanical and molecular mechanical potential using the 3‐21G basis set , 1996 .

[28]  S. Swaminathan,et al.  A heuristic intermolecular potential function for formaldehyde-water based on ab initio molecular orbital calculations , 1977 .

[29]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[30]  L. Kroon-Batenburg,et al.  Effect of methyl substitution at the acceptor in O-H.cntdot..cntdot..cntdot.O hydrogen bonds. Application of a moment-optimized DZP basis at the (self-consistent field + dispersion + corrected point-charge) level , 1986 .

[31]  Kazutoshi Tanabe,et al.  Basis set effects on the intermolecular interaction of hydrocarbon molecules obtained by an ab initio molecular orbital method : evaluation of dispersion energy , 1994 .

[32]  A. Bizzarri,et al.  Infrared excitation and dissociation of methanol dimers and trimers , 1990 .

[33]  C. Bock,et al.  Geometrical consequences of intermolecular hydrogen bond formation in the formic acid and acetic acid dimers from ab initio MO calculations , 1995 .

[34]  S. Krimm,et al.  Origin of the CO Stretch Mode Splitting in the Formic Acid Dimer , 1996 .

[35]  Harold A. Scheraga,et al.  Analytic intermolecular potential functions from ab initio SCF calculations of interaction energies between methane, methanol, acetic acid, and acetate and water , 1988 .

[36]  Larry A. Curtiss,et al.  Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity , 1979 .

[37]  John S. Muenter,et al.  THE STRUCTURE OF WATER DIMER FROM MOLECULAR BEAM ELECTRIC RESONANCE SPECTROSCOPY: PARTIALLY DEUTERATED DIMERS , 1977 .

[38]  S. Tsuzuki,et al.  Intermolecular interaction potentials of methane and ethylene dimers calculated with the Møller–Plesset, coupled cluster and density functional methods , 1998 .

[39]  K. Morokuma,et al.  Cluster and solution simulation of formaldehyde-water complexes and solvent effect on formaldehyde 1(n,π*) transition , 1993 .

[40]  David Feller,et al.  The Nature of K+/Crown Ether Interactions: A Hybrid Quantum Mechanical-Molecular Mechanical Study , 1994 .

[41]  J. Chao,et al.  Ideal gas thermodynamic properties of methanoic and ethanoic acids , 1978 .

[42]  B. Honig,et al.  New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects , 1996 .

[43]  M. Newton,et al.  Theoretical study of the o-methyl substituent effect in hydrogen bonds , 1980 .

[44]  J. Perchard,et al.  The water–methanol complexes. I. A matrix isolation study and an ab initio calculation on the 1‐1 species , 1993 .

[45]  M. Yáñez,et al.  Cooperative effects in the cyclic trimer of methanol. An ab initio molecular orbital study , 1994 .

[46]  Michael L. Klein,et al.  Intermolecular potential functions and the properties of water , 1982 .

[47]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[48]  J. Sauer,et al.  The vibrational frequency of the donor OH group in the H-bonded dimers of water, methanol and silanol. Ab initio calculations including anharmonicities , 1995 .

[49]  T. Zwier,et al.  Density Functional Theory Calculations of the Structures, Binding Energies, and Infrared Spectra of Methanol Clusters , 1998 .

[50]  Margaret C. Etter,et al.  Encoding and decoding hydrogen-bond patterns of organic compounds , 1990 .

[51]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[52]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[53]  F. J. Luque,et al.  Dimerization of Carboxylic Acids: Reliability of Theoretical Calculations and the Effect of Solvent , 1998 .

[54]  L. Curtiss Molecular orbital studies of methanol polymers using a minimal basis set , 1977 .

[55]  H. J. Bernstein,et al.  The heat of dimerization of some carboxylic acids in the vapour phase determined by a spectroscopic method , 1969 .

[56]  William L. Jorgensen,et al.  Ab Initio Study Of Hydrogen-Bonded Complexes Of Small Organic Molecules With Water , 1998 .

[57]  Bernard J. Ransil,et al.  Studies in Molecular Structure. IV. Potential Curve for the Interaction of Two Helium Atoms in Single‐Configuration LCAO MO SCF Approximation , 1961 .

[58]  John A. Pople,et al.  Approximate fourth-order perturbation theory of the electron correlation energy , 1978 .

[59]  K. Szalewicz,et al.  Effects of monomer geometry and basis set saturation on computed depth of water dimer potential , 1996 .

[60]  S. Bauer,et al.  Conversions over low barriers. IV: Dimer-monomer dissociation in formic acad , 1985 .

[61]  A. Bagno,et al.  Solvation of nonelectrolytes in water probed by 17O NMR relaxation of the solvent , 1993 .

[62]  B. A. Hess,et al.  Ab Initio Calculations of Supramolecular Recognition Modes. Cyclic versus Noncyclic Hydrogen Bonding in the Formic Acid/Formamide System , 1994 .

[63]  T. Halgren Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions , 1996 .

[64]  J. Makarewicz,et al.  Ab initio study of the water-formaldehyde complex , 1993 .

[65]  S. Tsuzuki,et al.  Intermolecular interaction potential of the carbon dioxide dimer , 1998 .

[66]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[67]  J. Brunvoll,et al.  Matrix infrared, ab initio and normal coordinate study of the association of methanol, considering especially the torsional mode in nitrogen and carbon monoxide matrices , 1983 .

[68]  J. R. Dixon,et al.  Hydrogen-bonded forms of methanol IR spectra and abinitiocalculations , 1997 .

[69]  D. Peeters,et al.  Small Clusters Between Water and Alcohols , 1994 .

[70]  Interaction of methane and methanol with water , 1983 .

[71]  J. Perchard,et al.  The water-methanol complexes. Matrix induced structural conversion of the 1-1 species , 1995 .

[72]  L. Túri Ab initio molecular orbital analysis of dimers of cis-formic acid. Implications for condensed phases , 1996 .

[73]  P. Åstrand,et al.  Novel model for calculating the intermolecular part of the infrared spectrum for molecular complexes , 1995 .

[74]  S. Bordiga,et al.  Mechanisms of methanol adsorption on silicalite and silica: IR spectra and ab-initio calculations , 1993 .

[75]  Giles Henderson Heat of dimerization of formic acid by FTIR , 1987 .

[76]  D. Ross,et al.  Evidence for two kinds of hydrogen bond in ice , 1993, Nature.

[77]  M. Gordon,et al.  Understanding the Hydrogen Bond Using Quantum Chemistry , 1996 .