Analysis and design optimization of electrooptic interferometric modulators for microphotonics applications

Scaling the electrode layout (electrode gap, electrode length) down to microscale dimensions extends the application of electrooptic (EO) modulators to microphotonics. In this paper, design criteria are set up to minimize the switching voltage of microscale EO Mach-Zehnder interferometric modulators. Mach-Zehnder interferometric modulators under different directions of electric field with respect to the optic axis are analyzed. Three expressions of the intensity output characteristics are presented for various crystal classes and compared in terms of conditions of validity and design applications. The analysis in this paper suggests that the switching voltage is strongly related with the direction of the electric field relative to the optic axis. For the 4-mm BaTiO/sub 3/ (r/sub 33/=28 pm/V,r/sub 51/=820 pm/V) Mach-Zehnder modulators, r/sub 51/ is utilized when the electric field is applied normal to the optic axis. In this configuration, the thermal stability and polarization insensitivity improve but the extinction ratio becomes a function of the electrode length. The phase-retardation expression is useful to find a suitable modulator length and maximize the extinction ratio. Some of the discussions also apply to Fabry-Pe/spl acute/rot interferometric modulators.

[1]  Bruce W Wessels,et al.  The electro-optic properties of epitaxial KTaxNb1−xO3 thin films , 2003 .

[2]  Jürgen Schubert,et al.  Ferroelectric BaTiO3 thin-film optical waveguide modulators , 2002 .

[3]  Chaomei Chen,et al.  Measuring the movement of a research paradigm , 2005, IS&T/SPIE Electronic Imaging.

[4]  Kuniharu Takizawa,et al.  Analysis of electro-optic crystal-based Fabry-Perot etalons for high-speed spatial light modulators. , 2003, Applied optics.

[5]  Jamie D. Phillips,et al.  Extraction of electro-optic coefficient in thin-film linear electro-optic Mach-Zehnder interferometers with nonperiodic intensity-voltage output characteristics , 2005 .

[6]  Clifford R. Pollock Fundamentals of Optoelectronics , 1994 .

[7]  V. Swenson,et al.  Optical waveguide Fabry-Perot modulators in LiNbO(3). , 1994, Applied optics.

[8]  S. Ruschin,et al.  Layout for polarization insensitive modulation in LiNbO/sub 3/ waveguides , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Pingsheng Tang,et al.  Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. , 2004, Optics express.

[10]  S. H. Wemple,et al.  Oxygen‐Octahedra Ferroelectrics. I. Theory of Electro‐optical and Nonlinear optical Effects , 1969 .

[11]  G. Li,et al.  Optical intensity modulators for digital and analog applications , 2003 .

[12]  Ding-Yuan Chen,et al.  Hysteretic electro-optic response in ferroelectric thin films , 2005, SPIE Optics + Photonics.

[13]  R. Morandotti,et al.  Microfabricated SrTiO3 ridge waveguides , 2005 .

[14]  S. Mathew Experimentally determined r13 electro-optic coefficient for a lithium niobate crystal. , 2003, Applied optics.

[15]  Ding-Yuan Chen,et al.  Optical waveguiding in BaTiO3∕MgO∕AlxOy∕GaAs heterostructures , 2004 .

[16]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[17]  Shigetoshi Nakamura,et al.  Electrooptic characteristics of thin-film PLZT waveguide using ridge-type Mach-Zehnder modulator , 2003 .

[18]  E. Mozdy,et al.  Surface micromachined Fabry-Perot tunable filter , 1996, IEEE Photonics Technology Letters.

[19]  Osamu Ogawa,et al.  A guided-wave optical electric field sensor with improved temperature stability , 1999 .