SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys

The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherent data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). We discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.

[1]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[2]  Will Saunders,et al.  The Dark Energy Spectrometer: a potential multi-fiber instrument for the Blanco 4-meter Telescope , 2012, Other Conferences.

[3]  Ulrich Hopp,et al.  HETDEX pilot survey for emission-line galaxies - I. Survey design, performance, and catalog , 2010, 1011.0426.

[4]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[5]  Allan Sandage,et al.  The Luminosity Function of Galaxies , 1988 .

[6]  Bernard Muschielok,et al.  4MOST: 4-metre multi-object spectroscopic telescope , 2012, Other Conferences.

[7]  Matthew Colless,et al.  The tiling algorithm for the 6dF Galaxy Survey , 2004, astro-ph/0403502.

[8]  R. Wechsler,et al.  The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.

[9]  Peter R. Gillingham,et al.  Mechanical features of the OzPoz fiber positioner for the VLT , 2000, Astronomical Telescopes and Instrumentation.

[10]  Bernard Muschielok,et al.  4MOST: 4-metre Multi-Object Spectroscopic Telescope , 2011, Astronomical Telescopes and Instrumentation.

[11]  A. Connolly,et al.  Spurious shear in weak lensing with the large synoptic survey telescope , 2013 .

[12]  T. Dwelly,et al.  The 4MOST facility simulator: instrument and science optimisation , 2012, Other Conferences.

[13]  Matthew Colless,et al.  'MOHAWK: a 4000-fiber positioner for DESpec , 2012, Other Conferences.

[14]  J. Tinker,et al.  THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE , 2012, 1207.2160.

[15]  Eric H. Neilsen Prediction of Observing Conditions for DES Exposure Scheduling , 2011 .

[16]  Scott Smedley,et al.  Target allocation yields for massively multiplexed spectroscopic surveys with fibers , 2014, Astronomical Telescopes and Instrumentation.

[17]  A. Amara,et al.  Three-dimensional spherical analyses of cosmological spectroscopic surveys , 2014, 1405.3660.

[18]  Xiaohui Fan Simulation of Stellar Objects in SDSS Color Space , 1999 .

[19]  Judith G. Cohen,et al.  Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.

[20]  Francisco Delgado,et al.  LSST operation simulator implementation , 2006, SPIE Astronomical Telescopes + Instrumentation.

[21]  A. Amara,et al.  A way forward for Cosmic Shear: Monte-Carlo Control Loops , 2013, 1303.4739.

[22]  P. Schneider,et al.  Modelling telluric line spectra in the optical and infrared with an application to VLT/X-Shooter spectra , 2015, 1511.04641.

[23]  A. Ealet,et al.  The BigBoss Experiment , 2011 .

[24]  E. Bertin,et al.  MODELING THE TRANSFER FUNCTION FOR THE DARK ENERGY SURVEY , 2014, 1411.0032.

[25]  R. Siebenmorgen,et al.  Synthesising, using, and correcting for telluric features in high-resolution astronomical spectra , 2010, 1008.3419.

[26]  Scot S. Olivier,et al.  Large Synoptic Survey Telescope: Dark Energy Science Collaboration , 2012 .

[27]  Adam Amara,et al.  An Ultra Fast Image Generator (UFig) for wide-field astronomy , 2012, Astron. Comput..

[28]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions , 2011, 1111.0166.

[29]  D. DePoy,et al.  Automated characterization of CCD detectors for DECam , 2010, Astronomical Telescopes + Instrumentation.

[30]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[31]  Samuel C. Barden,et al.  Performance of the WIYN fiber-fed MOS system: Hydra , 1995, Defense, Security, and Sensing.

[32]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[33]  Ulrich Hopp,et al.  THE HETDEX PILOT SURVEY. I. SURVEY DESIGN, PERFORMANCE, AND CATALOG OF EMISSION-LINE GALAXIES , 2010 .

[34]  Kenneth Patton,et al.  The readout and control system of the Dark Energy Camera , 2012, Other Conferences.

[35]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[36]  Huan Lin,et al.  Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements , 2012, 1207.3347.

[37]  Kenneth Patton,et al.  Status of the Dark Energy Survey Camera (DECam) project , 2010, Other Conferences.

[38]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[39]  S. Dye,et al.  Galaxy And Mass Assembly (GAMA): the input catalogue and star–galaxy separation , 2009, 0910.5120.

[40]  E. Hivon,et al.  HEALPix --- a Framework for High Resolution, Fast Analysis on the Sphere , 2002 .

[41]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[42]  Robert H. Lupton,et al.  An open source application framework for astronomical imaging pipelines , 2010, Astronomical Telescopes + Instrumentation.

[43]  Ming Liang,et al.  Prototype pipeline for LSST wavefront sensing and reconstruction , 2012, Other Conferences.

[44]  Victor L. Krabbendam,et al.  Simulating the LSST system , 2010, Astronomical Telescopes + Instrumentation.

[45]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[46]  Jay V. Bixler,et al.  THE IMPLICATIONS OF ATMOSPHERIC EFFECTS FOR FIBER-FED SPECTROSCOPY , 1989 .

[47]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[48]  Fermilab,et al.  The Dark Energy Spectrometer (DESpec): A Multi-Fiber Spectroscopic Upgrade of the Dark Energy Camera and Survey for the Blanco Telescope , 2012, 1209.2451.