The general collective model applied to the chains of Pt, Os and W isotopes

Calculated energy spectra, B(E2) branching ratios, absolute B(E2) values and quadrupole moments are compared with experiment. The model shows a transition of the Pt isotopes from the gamma -soft nearly triaxial 78196Pt to gamma -unstable 78190Pt. Two minima appear in the case of 78186Pt, one at the oblate and the other one at the prolate axis. Similar structure is obtained for 76184Os: the character of the potential changes in the Os chain from prolately deformed minimum to gamma -soft nearly triaxial behaviour in the case of 76192Os. The W isotopes continue the properties of the isotopes 78186Pt and 76184Os. The capabilities of the model and the illustrative way of presenting the collective properties by potential energy surfaces are demonstrated.

[1]  W. Greiner,et al.  General collective model and its application to92238U , 1980 .

[2]  M. Moshinsky Confrontation of nuclear collective models , 1980 .

[3]  J. Cizewski,et al.  The O(6) → rotor transition in the PtOs nuclei , 1978 .

[4]  J. Alessi,et al.  Electromagnetic properties of Pt-194 and the question of its triaxiality , 1978 .

[5]  S. G. Rohoziński The oscillator basis for octupole collective motion in nuclei , 1978 .

[6]  P. Hess A gradient formula for the group U(2l+1) , 1978 .

[7]  A. Arima,et al.  Interacting boson model of collective nuclear states II. The rotational limit , 1978 .

[8]  A. Gheorghe,et al.  On the exact solution of the harmonic quadrupole collective hamiltonian , 1978 .

[9]  H. Emling,et al.  Study of E2 transition probabilities in 194Pt , 1977 .

[10]  I. Lee,et al.  Determination of. gamma. softness in /sup 192/ /sup 194/ /sup 196/Pt from Coulomb excitation with /sup 136/Xe projectiles , 1977 .

[11]  W. K. Dagenhart,et al.  Coulomb excitation of 2/sup +/ and 3/sup -/ states in /sup 192/Pt and /sup 194/Pt , 1977 .

[12]  M. Moshinsky,et al.  Group theory of the collective model of the nucleus , 1977 .

[13]  F. Margetan,et al.  Exact solution of the quadrupole surface vibration Hamiltonian in body-fixed coordinates , 1976 .

[14]  W. Hartwig,et al.  Nuclear shapes of the transitional nuclei 194, 196, 198Pt , 1976 .

[15]  A. Arima,et al.  Interacting boson model of collective states I. The vibrational limit , 1976 .

[16]  L. Funke,et al.  Two-quasiparticle and rotation-aligned structures in 190Pt, 192Pt and 194Pt , 1976 .

[17]  R. T. Sharp,et al.  U(5) is contained inO(5) is contained inO(3) and the exact solution for the problem of quadrupole vibrations of the nucleus. [Liquid drop model] , 1976 .

[18]  R. T. Sharp,et al.  U(5) ⊆O(5) ⊆O(3) and the exact solution for the problem of quadrupole vibrations of the nucleus , 1976 .

[19]  W. F. Davidson,et al.  Evidence for h92 proton induced backbending in the Os region: Investigation of the nuclei 181Re, 181–184Os , 1976 .

[20]  A. Arima,et al.  COLLECTIVE NUCLEAR STATES AS REPRESENTATIONS OF A SU(6) GROUP , 1975 .

[21]  W. Greiner,et al.  Phase transition from deformed to γ-instable Os isotopes and the structure of the giant resonances , 1974 .

[22]  W. Greiner,et al.  Collective potential energy surfaces and nuclear structure , 1971 .

[23]  W. Greiner,et al.  A new treatment of the collective nuclear hamiltonian , 1969 .

[24]  M. Baranger,et al.  COMPLETE NUMERICAL SOLUTION OF BOHR'S COLLECTIVE HAMILTONIAN. , 1967 .

[25]  Walter Greiner,et al.  ROTATION VIBRATION INTERACTION IN DEFORMED NUCLEI , 1965 .

[26]  K. Hecht Some simple R5 Wigner coefficients and their application , 1965 .

[27]  W. Greiner,et al.  Die Rotations-Vibrations-Wechselwirkung in deformiertengg-Kernen , 1962 .

[28]  A. Davydov,et al.  Relative transition probabilities between rotational levels of non-axial nuclei , 1959 .

[29]  A. Davydov,et al.  Rotational states in even atomic nuclei , 1958 .

[30]  S. Flügge Die Eigenschwingungen eines Flüssigkeitstropfens und ihre Anwendung auf die Kernphysik , 1941 .