A second order accurate, positive scheme for singularly perturbed boundary value problems
暂无分享,去创建一个
[1] T. D. Morley,et al. On central difference Approximations to general second order elliptic equations , 1987 .
[2] Lothar Collatz,et al. Bemerkungen zur Fehlerabschätzung für das Differenzenverfahren bei partiellen Differentialgleichungen , 1933 .
[3] S. Gerschgorin,et al. Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller Differentialgleichungen , 1930 .
[4] C. Pearson. On a Differential Equation of Boundary Layer Type , 1968 .
[5] W. Eckhaus. Asymptotic Analysis of Singular Perturbations , 1979 .
[6] T. Hughes,et al. Streamline upwind formulations for advection-diffusion, Navier-Stokes, and first-order hyperbolic equations. , 1982 .
[7] R. Kellogg,et al. Analysis of some difference approximations for a singular perturbation problem without turning points , 1978 .
[8] Alan E. Berger,et al. An analysis of a uniformly accurate difference method for a singular perturbation problem , 1981 .
[9] M. J. Werle,et al. Numerical Method for Boundary Layers with Blowing—The Exponential Box Scheme , 1978 .
[10] D. N. De G. Allen,et al. RELAXATION METHODS APPLIED TO DETERMINE THE MOTION, IN TWO DIMENSIONS, OF A VISCOUS FLUID PAST A FIXED CYLINDER , 1955 .
[11] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .