Changes in microRNA abundance may regulate diapause in the flesh fly, Sarcophaga bullata.

[1]  C. Wiklund,et al.  Energy and lipid metabolism during direct and diapause development in a pierid butterfly , 2016, Journal of Experimental Biology.

[2]  D. Denlinger,et al.  Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. , 2016, Insect biochemistry and molecular biology.

[3]  M. Rosbash,et al.  mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression , 2016, Proceedings of the National Academy of Sciences.

[4]  N. Perrimon,et al.  miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga , 2016, PLoS genetics.

[5]  Hanane Hadj-Moussa,et al.  The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns , 2016, Scientific Reports.

[6]  B. E. Luu,et al.  Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel. , 2016, Physiological genomics.

[7]  U. Sauer,et al.  Life span extension by targeting a link between metabolism and histone acetylation in Drosophila , 2016, EMBO reports.

[8]  Dahua Chen,et al.  MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts , 2016, Proceedings of the National Academy of Sciences.

[9]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[10]  C. Grozinger,et al.  Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens , 2015, Molecular ecology.

[11]  E. Dopman,et al.  Transcriptome profiling reveals mechanisms for the evolution of insect seasonality , 2015, Journal of Experimental Biology.

[12]  Jeong-Hyeon Choi,et al.  Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii , 2015, BMC Genomics.

[13]  N. Crapoulet,et al.  Identification and profiling of miRNAs in the freeze-avoiding gall moth Epiblema scudderiana via next-generation sequencing , 2015, Molecular and Cellular Biochemistry.

[14]  Wei-Jun Yang,et al.  Expression profiles of miRNAs and involvement of miR-100 and miR-34 in regulation of cell cycle arrest in Artemia. , 2015, The Biochemical journal.

[15]  Zehua Zhang,et al.  Transcriptomic and proteomic analysis of pre-diapause and non-diapause eggs of migratory locust, Locusta migratoria L. (Orthoptera: Acridoidea) , 2015, Scientific Reports.

[16]  Saeed Salem,et al.  Key molecular processes of the diapause to post‐diapause quiescence transition in the alfalfa leafcutting bee Megachile rotundata identified by comparative transcriptome analysis , 2015 .

[17]  J. Graff,et al.  Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism , 2015, Nature Communications.

[18]  Artemis G. Hatzigeorgiou,et al.  DIANA-miRPath v3.0: deciphering microRNA function with experimental support , 2015, Nucleic Acids Res..

[19]  Cheng-Wei Wu,et al.  Expression Profiling and Structural Characterization of MicroRNAs in Adipose Tissues of Hibernating Ground Squirrels , 2014, Genom. Proteom. Bioinform..

[20]  Yongbo Xue,et al.  Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle , 2014, Nature Communications.

[21]  D. Nässel,et al.  The Sleeping Beauty: How Reproductive Diapause Affects Hormone Signaling, Metabolism, Immune Response and Somatic Maintenance in Drosophila melanogaster , 2014, PloS one.

[22]  S. Cohen,et al.  Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut , 2014, Genes & development.

[23]  Yongping Huang,et al.  MicroRNA Let-7 regulates molting and metamorphosis in the silkworm, Bombyx mori. , 2014, Insect biochemistry and molecular biology.

[24]  M. Milán,et al.  MicroRNA-mediated regulation of Dp53 in the Drosophila fat body contributes to metabolic adaptation to nutrient deprivation. , 2014, Cell reports.

[25]  P. Morin,et al.  Differential expression of miRNAs with metabolic implications in hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus , 2014, Molecular and Cellular Biochemistry.

[26]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[27]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[28]  L. Tirry,et al.  Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae , 2013, BMC Genomics.

[29]  Monica F. Poelchau,et al.  RNA-Seq reveals early distinctions and late convergence of gene expression between diapause and quiescence in the Asian tiger mosquito, Aedes albopictus , 2013, Journal of Experimental Biology.

[30]  Kenneth B. Storey,et al.  High-Throughput Sequencing Reveals Differential Expression of miRNAs in Intestine from Sea Cucumber during Aestivation , 2013, PloS one.

[31]  Jennifer I. Clark,et al.  Transcriptional evidence for small RNA regulation of pupal diapause in the flesh fly, Sarcophaga bullata. , 2013, Insect biochemistry and molecular biology.

[32]  Breanna A. Symmes,et al.  The miRNA Pathway Controls Rapid Changes in Activity-Dependent Synaptic Structure at the Drosophila melanogaster Neuromuscular Junction , 2013, PloS one.

[33]  A. P. D. Léon,et al.  Discovery of MicroRNAs of the Stable Fly (Diptera: Muscidae) by High-Throughput Sequencing , 2013, Journal of medical entomology.

[34]  Min Han,et al.  Functional Analysis of Neuronal MicroRNAs in Caenorhabditis elegans Dauer Formation by Combinational Genetics and Neuronal miRISC Immunoprecipitation , 2013, PLoS genetics.

[35]  R. de Cabo,et al.  MicroRNA 33 Regulates Glucose Metabolism , 2013, Molecular and Cellular Biology.

[36]  J. Stuart,et al.  Deep sequencing and genome-wide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor , 2013, BMC Genomics.

[37]  K. Storey,et al.  Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis. , 2012, Cryobiology.

[38]  Kyle K. Biggar,et al.  MicroRNA Regulation in Extreme Environments: Differential Expression of MicroRNAs in the Intertidal Snail Littorina littorea During Extended Periods of Freezing and Anoxia , 2012, Genom. Proteom. Bioinform..

[39]  Kyle K. Biggar,et al.  Differential Expression of Mature MicroRNAs Involved in Muscle Maintenance of Hibernating Little Brown Bats, Myotis lucifugus: A Model of Muscle Atrophy Resistance , 2012, Genom. Proteom. Bioinform..

[40]  Monica F. Poelchau,et al.  Transcript profiling reveals mechanisms for lipid conservation during diapause in the mosquito, Aedes albopictus. , 2012, Journal of insect physiology.

[41]  V. Ambros,et al.  Dauer larva quiescence alters the circuitry of microRNA pathways regulating cell fate progression in C. elegans , 2012, Development.

[42]  J. Feder,et al.  Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella , 2011, Journal of Experimental Biology.

[43]  Kyle K Biggar,et al.  The emerging roles of microRNAs in the molecular responses of metabolic rate depression. , 2011, Journal of molecular cell biology.

[44]  J. Steitz,et al.  Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA–protein complexes (microRNPs) , 2011, Proceedings of the National Academy of Sciences.

[45]  S. Tammariello,et al.  Proteomic and phosphoproteomic profiling during diapause entrance in the flesh fly, Sarcophaga crassipalpis. , 2011, Journal of insect physiology.

[46]  V. Ambros,et al.  Effect of life history on microRNA expression during C. elegans development. , 2011, RNA.

[47]  A. Raikhel,et al.  microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti , 2010, Proceedings of the National Academy of Sciences.

[48]  Rolf Jaggi,et al.  MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments , 2010, BMC Molecular Biology.

[49]  Dan Wang,et al.  Distinct Presynaptic and Postsynaptic Dismantling Processes of Drosophila Neuromuscular Junctions during Metamorphosis , 2010, The Journal of Neuroscience.

[50]  B. Berger,et al.  Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs , 2010, Proceedings of the National Academy of Sciences.

[51]  D. Denlinger,et al.  Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly , 2010, Proceedings of the National Academy of Sciences.

[52]  D. Denlinger,et al.  Isolation of diapause-regulated genes from the flesh fly, Sarcophaga crassipalpis by suppressive subtractive hybridization. , 2010, Journal of insect physiology.

[53]  Weixiong Zhang,et al.  Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development , 2010, BMC Genomics.

[54]  V. Ambros,et al.  A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans , 2009, Proceedings of the National Academy of Sciences.

[55]  J. Reynolds,et al.  Decoupling development and energy flow during embryonic diapause in the cricket, Allonemobius socius , 2009, Journal of Experimental Biology.

[56]  J. Reynolds,et al.  Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius , 2009, Journal of Experimental Biology.

[57]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[58]  Guoli Zhou,et al.  Energy metabolism during diapause in Culex pipiens mosquitoes. , 2009, Journal of insect physiology.

[59]  Le Kang,et al.  Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust , 2009, Genome Biology.

[60]  L. Johnston,et al.  Temporal Regulation of Metamorphic Processes in Drosophila by the let-7 and miR-125 Heterochronic MicroRNAs , 2008, Current Biology.

[61]  S. R. Palli,et al.  Proliferation and differentiation of intestinal stem cells during metamorphosis of the red flour beetle, Tribolium castaneum , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[62]  Ryan D. Morin,et al.  Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. , 2008, Genome research.

[63]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[64]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[65]  Manolis Kellis,et al.  Reliable prediction of regulator targets using 12 Drosophila genomes. , 2007, Genome research.

[66]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[67]  Phillip D. Zamore,et al.  Sorting of Drosophila Small Silencing RNAs , 2007, Cell.

[68]  D. Denlinger,et al.  Up-regulation of heat shock proteins is essential for cold survival during insect diapause , 2007, Proceedings of the National Academy of Sciences.

[69]  N. Lau,et al.  The coming of age for Piwi proteins. , 2007, Molecular cell.

[70]  D. Denlinger,et al.  Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. , 2007, Journal of insect physiology.

[71]  A. Teleman,et al.  Drosophila lacking microRNA miR-278 are defective in energy homeostasis. , 2006, Genes & development.

[72]  H. Horvitz,et al.  The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. , 2005, Developmental cell.

[73]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[74]  V. Ambros,et al.  Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. , 2003, Developmental biology.

[75]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[76]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[77]  D. Denlinger,et al.  Regulation of diapause. , 2003, Annual review of entomology.

[78]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[79]  Ronald D. Flannagan,et al.  Diapause-specific gene expression in pupae of the flesh fly Sarcophaga crassipalpis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[80]  M. B. Rheuben,et al.  Degenerative changes in the function of neuromuscular junctions of Manduca sexta during metamorphosis. , 1992, The Journal of experimental biology.

[81]  B. B. Miller,et al.  A diapause maternal effect in the flesh fly, Sarcophaga bullata: Transfer of information from mother to progeny , 1989 .

[82]  L. Gilbert,et al.  Haemolymph ecdysteroid titres in diapause- and non-diapause-destined larvae and pupae of Sarcophaga argyrostoma , 1987 .

[83]  D. Denlinger,et al.  Cold‐hardiness: a component of the diapause syndrome in pupae of the flesh flies, Sarcophaga crassipalpis and S. bullata , 1984 .

[84]  D. Denlinger,et al.  A maternal effect that eliminates pupal diapause in progeny of the flesh fly, Sarcophaga bullata , 1982 .

[85]  D. Denlinger,et al.  Stimulatory effect of organic solvents on initiating development in diapausing pupae of the flesh fly, Sarcophaga crassipalpis, and the tobacco hornworm, Manduca sexta , 1980 .

[86]  G. Fraenkel,et al.  Rates and cycles of oxygen consumption during pupal diapause in Sarcophaga flesh flies. , 1972, Journal of insect physiology.

[87]  D. Denlinger INDUCTION AND TERMINATION OF PUPAL DIAPAUSE IN SARCOPHAGA (DIPTERA: SARCOPHAGIDAE) , 1972 .

[88]  D. Denlinger Embryonic determination of pupal diapause in the flesh fly Sarcophaga crassipalpis. , 1971, Journal of insect physiology.