Sufficient conditions under which a transitive system is chaotic

Abstract Let (X,T) be a topologically transitive dynamical system. We show that if there is a subsystem (Y,T) of (X,T) such that (X×Y,T×T) is transitive, then (X,T) is strongly chaotic in the sense of Li and Yorke. We then show that many of the known sufficient conditions in the literature, as well as a few new results, are corollaries of this statement. In fact, the kind of chaotic behavior we deduce in these results is a much stronger variant of Li–Yorke chaos which we call uniform chaos. For minimal systems we show, among other results, that uniform chaos is preserved by extensions and that a minimal system which is not uniformly chaotic is PI.

[1]  E. Akin,et al.  Residual properties and almost equicontinuity , 2001 .

[2]  E. Glasner,et al.  Local entropy theory , 2009, Ergodic Theory and Dynamical Systems.

[3]  Idris Assani Chapel Hill Ergodic Theory Workshops , 2004 .

[4]  I. Bronšteǐn,et al.  Extensions of Minimal Transformation Groups , 2011 .

[5]  Independent sets of transitive points , 1989 .

[6]  B. Weiss,et al.  Sensitive dependence on initial conditions , 1993 .

[7]  François Blanchard,et al.  On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).

[8]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[9]  H. Furstenberg,et al.  The Structure of Distal Flows , 1963 .

[10]  W. Veech POINT-DISTAL FLOWS. , 1970 .

[11]  Ethan Akin,et al.  When is a Transitive Map Chaotic , 1996 .

[12]  S. Glasner,et al.  Rigidity in topological dynamics , 1989, Ergodic Theory and Dynamical Systems.

[13]  Devaney's chaos implies existence of s-scrambled sets , 2004 .

[14]  David Kerr,et al.  Independence in topological and C*-dynamics , 2006 .

[15]  James A. Yorke,et al.  INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .

[16]  Applications of the Baire-category method to the problem of independent sets , 1973 .

[17]  Eli Glasner,et al.  Ergodic Theory via Joinings , 2003 .

[18]  Wen Huang,et al.  Devaney's chaos or 2-scattering implies Li–Yorke's chaos , 2002 .

[19]  Xiangdong Ye,et al.  Topological complexity, return times and weak disjointness , 2004, Ergodic Theory and Dynamical Systems.

[20]  R. Ellis,et al.  Proximal-isometric (P J) flows☆ , 1975 .

[21]  Angelo Vulpiani,et al.  Chaotic Dynamical Systems , 1993 .

[22]  Jan Mycielski,et al.  Independent sets in topological algebras , 1964 .

[23]  Mari Carmen Puerta Melguizo,et al.  Vrije Universiteit , 2002, INTR.

[24]  X. Ye,et al.  On sensitive sets in topological dynamics , 2008 .

[25]  Vivian Akpene Apety Chaotic Dynamical Systems , 2011 .

[26]  B. Weiss,et al.  On the construction of minimal skew products , 1979 .

[27]  M. Pollicott,et al.  Dynamical Systems and Ergodic Theory , 1998 .

[28]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[29]  Harry Furstenberg,et al.  Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.

[30]  E. Akin,et al.  The Topological Dynamics of Ellis Actions , 2003 .

[31]  F. Blanchard,et al.  Asymptotic pairs in positive-entropy systems , 2002, Ergodic Theory and Dynamical Systems.

[32]  Susan G. Williams Toeplitz minimal flows which are not uniquely ergodic , 1984 .

[33]  Edward Marczewski,et al.  Independence and homomorphisms in abstract algebras , 1961 .

[34]  J. Auslander,et al.  Minimal flows and their extensions , 1988 .

[35]  Joseph Auslander,et al.  Topological dynamics , 2008, Scholarpedia.

[36]  Wen Huang,et al.  Measure-theoretical sensitivity and equicontinuity , 2011 .

[37]  Michael E. Paul,et al.  Almost automorphic symbolic minimal sets without unique ergodicity , 1979 .

[38]  E. Akin On chain continuity , 1995 .

[39]  Wen Huang,et al.  Topological size of scrambled sets , 2008 .