Sufficient conditions under which a transitive system is chaotic
暂无分享,去创建一个
E. Akin | E. Glasner | W. Huang | S. Shao | X. Ye
[1] E. Akin,et al. Residual properties and almost equicontinuity , 2001 .
[2] E. Glasner,et al. Local entropy theory , 2009, Ergodic Theory and Dynamical Systems.
[3] Idris Assani. Chapel Hill Ergodic Theory Workshops , 2004 .
[4] I. Bronšteǐn,et al. Extensions of Minimal Transformation Groups , 2011 .
[5] Independent sets of transitive points , 1989 .
[6] B. Weiss,et al. Sensitive dependence on initial conditions , 1993 .
[7] François Blanchard,et al. On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).
[8] J. Banks,et al. On Devaney's definition of chaos , 1992 .
[9] H. Furstenberg,et al. The Structure of Distal Flows , 1963 .
[10] W. Veech. POINT-DISTAL FLOWS. , 1970 .
[11] Ethan Akin,et al. When is a Transitive Map Chaotic , 1996 .
[12] S. Glasner,et al. Rigidity in topological dynamics , 1989, Ergodic Theory and Dynamical Systems.
[13] Devaney's chaos implies existence of s-scrambled sets , 2004 .
[14] David Kerr,et al. Independence in topological and C*-dynamics , 2006 .
[15] James A. Yorke,et al. INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .
[16] Applications of the Baire-category method to the problem of independent sets , 1973 .
[17] Eli Glasner,et al. Ergodic Theory via Joinings , 2003 .
[18] Wen Huang,et al. Devaney's chaos or 2-scattering implies Li–Yorke's chaos , 2002 .
[19] Xiangdong Ye,et al. Topological complexity, return times and weak disjointness , 2004, Ergodic Theory and Dynamical Systems.
[20] R. Ellis,et al. Proximal-isometric (P J) flows☆ , 1975 .
[21] Angelo Vulpiani,et al. Chaotic Dynamical Systems , 1993 .
[22] Jan Mycielski,et al. Independent sets in topological algebras , 1964 .
[23] Mari Carmen Puerta Melguizo,et al. Vrije Universiteit , 2002, INTR.
[24] X. Ye,et al. On sensitive sets in topological dynamics , 2008 .
[25] Vivian Akpene Apety. Chaotic Dynamical Systems , 2011 .
[26] B. Weiss,et al. On the construction of minimal skew products , 1979 .
[27] M. Pollicott,et al. Dynamical Systems and Ergodic Theory , 1998 .
[28] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[29] Harry Furstenberg,et al. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.
[30] E. Akin,et al. The Topological Dynamics of Ellis Actions , 2003 .
[31] F. Blanchard,et al. Asymptotic pairs in positive-entropy systems , 2002, Ergodic Theory and Dynamical Systems.
[32] Susan G. Williams. Toeplitz minimal flows which are not uniquely ergodic , 1984 .
[33] Edward Marczewski,et al. Independence and homomorphisms in abstract algebras , 1961 .
[34] J. Auslander,et al. Minimal flows and their extensions , 1988 .
[35] Joseph Auslander,et al. Topological dynamics , 2008, Scholarpedia.
[36] Wen Huang,et al. Measure-theoretical sensitivity and equicontinuity , 2011 .
[37] Michael E. Paul,et al. Almost automorphic symbolic minimal sets without unique ergodicity , 1979 .
[38] E. Akin. On chain continuity , 1995 .
[39] Wen Huang,et al. Topological size of scrambled sets , 2008 .