Dynamic wavefront and polarisation control for ultrashort-pulse laser microprocessing (Invited Keynote)

New developments in wavefront and polarisation control for ultrashort-pulse laser microprocessing are presented. Two Spatial Light Modulators are used in combination to structure the optical fields of a picosecond-pulse laser beam, producing vortex wavefronts and radial or azimuthal polarisation states. Demonstration of multiple first-order beams with vortex wavefronts and radial or azimuthal polarization states is given, produced using Computer Generated Holograms. The beams produced are used to nano-structure a highly polished metal surface. Laser Induced Periodic Surface Structures are observed and used to directly verify the state of polarisation in the focal plane and help to characterize the optical properties of the setup. © 2014 The Authors. Published by Bayerisches Laserzentrum GmbH

[1]  Eric Audouard,et al.  Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps , 2005 .

[2]  G. Mourou,et al.  Self-channeling of high-peak-power femtosecond laser pulses in air. , 1995, Optics letters.

[3]  Craig B. Arnold,et al.  Bessel and annular beams for materials processing , 2012 .

[4]  J Ouyang,et al.  Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. , 2013, Optics express.

[6]  Bo Tan,et al.  Interconnect microvia drilling with a radially polarized laser beam , 2006 .

[7]  Rudolf Weber,et al.  Effects of Radial and Tangential Polarization in Laser Material Processing , 2011 .

[8]  Nathan J. Jenness,et al.  Three-dimensional parallel holographic micropatterning using a spatial light modulator. , 2008, Optics express.

[9]  Yoshio Hayasaki,et al.  Polarization distribution control of parallel femtosecond pulses with spatial light modulators. , 2013, Optics express.

[10]  R. B. Kay,et al.  Polarization effects in four‐photon conductivity in quartz , 1975 .

[11]  Stuart Edwardson,et al.  Diffractive multi-beam surface micro-processing using 10 ps laser pulses , 2009 .

[12]  G. Dearden,et al.  High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings , 2010 .

[13]  Michael D. Perry,et al.  Material effects in ultra-short pulse laser drilling of metals , 1999 .

[14]  Andreas Ruf,et al.  Fundamental aspects in machining of metals with short and ultrashort laser pulses , 2004, SPIE LASE.

[15]  J Ouyang,et al.  Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. , 2013, Optics express.

[16]  M. Meier,et al.  Material processing with pulsed radially and azimuthally polarized laser radiation , 2007 .

[17]  M. Gedvilas,et al.  Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing , 2013 .

[18]  Stuart Edwardson,et al.  Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses , 2012 .

[19]  T. Mulvey,et al.  Constituents of Matter: Atoms, Molecules, Nuclei and Particles , 1997 .

[20]  G. Dearden,et al.  Real-time control of polarisation in ultra-short-pulse laser micro-machining , 2012, Applied Physics A.

[21]  A. Ostendorf,et al.  Polarization effects in ultrashort-pulse laser drilling , 1999 .

[22]  V. Makarov,et al.  Filamentation of arbitrary polarized femtosecond laser pulses in case of high-order Kerr effect. , 2013, Optics letters.

[23]  P. Stanley,et al.  The effect of polarization on ultrashort pulsed laser ablation of thin metal films , 2002 .

[24]  E. J. Robinson,et al.  Laser Triple Quantum Photoionization of Cesium. , 1971 .

[25]  Nobuo Nishida,et al.  Variable holographic femtosecond laser processing by use of a spatial light modulator , 2005 .

[26]  V. Niziev,et al.  Influence of beam polarization on laser cutting efficiency , 1999 .

[27]  M Rioux,et al.  Linear, annular, and radial focusing with axicons and applications to laser machining. , 1978, Applied optics.

[28]  G. Fowles,et al.  Introduction to modern optics , 1968 .

[29]  Junichi Hamazaki,et al.  Optical-vortex laser ablation. , 2010, Optics express.

[30]  Lukas Novotny,et al.  Programmable vector point-spread function engineering. , 2006, Optics express.

[31]  Lora Ramunno,et al.  Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate , 2012 .

[32]  H. Reiss Polarization Effects in High-Order Multiphoton Ionization , 1972 .

[33]  J. Huignard,et al.  Direct ultrafast laser micro-structuring of materials using programmable beam shaping , 2007 .

[34]  Klaus Sokolowski-Tinten,et al.  Multiphoton ionization in dielectrics: comparison of circular and linear polarization. , 2006 .

[35]  Jiankun Yang,et al.  Generation and analysis of both in-phase and out-phase radially polarized femtosecond-pulse beam , 2013 .

[36]  V. Konov,et al.  Drilling of Metals , 2004 .