Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination

We report on efficient solar cells on recyclable cellulose nanocrystal (CNC) substrates with a new device structure wherein polyethylenimine-modified Ag is used as the bottom electron-collecting electrode and high-conductivity poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS, PH1000) is used as the semitransparent top holecollecting electrode. The PEDOT:PSS top electrode is deposited by a film-transfer lamination technique. This dry process avoids swelling damage to the CNC substrate, which is observed when PEDOT:PSS is directly spin-coated from an aqueous solution. Solar cells on recyclable CNC substrates exhibit a maximum power conversion efficiency of 4.0% with a large fill factor of 0.64 ± 0.02 when illuminated through the top semitransparent PEDOT:PSS electrode. The performance of solar cells on CNC substrates is comparable to that of reference solar cells on polyethersulfone substrates.

[1]  Jie Zhang,et al.  Efficient Solution‐Processed Small‐Molecule Solar Cells with Inverted Structure , 2013, Advanced materials.

[2]  Bernard Kippelen,et al.  Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure. , 2012, Physical chemistry chemical physics : PCCP.

[3]  Bernard Kippelen,et al.  Recyclable organic solar cells on cellulose nanocrystal substrates , 2013, Scientific Reports.

[4]  Jianyong Ouyang,et al.  Solution‐Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices , 2012, Advanced materials.

[5]  Bo Qu,et al.  Papery solar cells based on dielectric/metal hybrid transparent cathode , 2010 .

[6]  Gang Li,et al.  10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells , 2013, Advanced materials.

[7]  F. Krebs,et al.  Organic photovoltaics , 2013, Nanotechnology.

[8]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[9]  Yi Cui,et al.  Transparent and conductive paper from nanocellulose fibers , 2013 .

[10]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[11]  Wolfgang Mühleisen,et al.  Highly efficient organic solar cells with printable low-cost transparent contacts , 2008 .

[12]  A. Alsayed,et al.  Highly Conductive Poly(3,4‐ethylenedioxythiophene):Poly (styrenesulfonate) Films Using 1‐Ethyl‐3‐methylimidazolium Tetracyanoborate Ionic Liquid , 2012 .

[13]  M. Wienk,et al.  Efficient Polymer Solar Cells on Opaque Substrates with a Laminated PEDOT:PSS Top Electrode , 2013 .

[14]  Talha M. Khan,et al.  Inverted organic solar cells with polymer-modified fluorine-doped tin oxide as the electron-collecting electrode , 2014 .

[15]  Ji-hoon Kim,et al.  High Open Circuit Voltage Solution-Processed Tandem Organic Photovoltaic Cells Employing a Bottom Cell Using a New Medium Band Gap Semiconducting Polymer , 2013 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Soonil Hong,et al.  Electrostatically Self‐Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells , 2012, Advanced materials.

[18]  Y. Kim,et al.  Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post‐Treatment for ITO‐Free Organic Solar Cells , 2011 .

[19]  Frederik C. Krebs,et al.  Biodegradable polymer solar cells , 2008 .

[20]  Wei Gong,et al.  High‐Performance Metal‐Free Solar Cells Using Stamp Transfer Printed Vapor Phase Polymerized Poly(3,4‐Ethylenedioxythiophene) Top Anodes , 2012 .

[21]  Arved C. Hübler,et al.  Printed Paper Photovoltaic Cells , 2011 .

[22]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[23]  Wenjing Tian,et al.  Investigation on polymer anode design for flexible polymer solar cells , 2008 .

[24]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[25]  Gang Li,et al.  Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. , 2009, Journal of the American Chemical Society.

[26]  William J. Potscavage,et al.  ITO-free large-area organic solar cells. , 2010, Optics express.

[27]  K. Ho,et al.  Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells , 2012 .

[28]  Bernard Kippelen,et al.  High performance polymeric charge recombination layer for organic tandem solar cells , 2012 .

[29]  J. Shim,et al.  Studies of the optimization of recombination layers for inverted tandem polymer solar cells , 2012 .

[30]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[31]  Wenjing Tian,et al.  Inverted and transparent polymer solar cells prepared with vacuum-free processing , 2009 .

[32]  Dong-Yu Kim,et al.  Solution‐processible polymer solar cells fabricated on a papery substrate , 2012 .

[33]  Neil C Greenham,et al.  Polymer solar cells , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  R. Österbacka,et al.  Paper Electronics , 2011, Advanced materials.

[35]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.