Fluence thresholds for grazing incidence hard x-ray mirrors
暂无分享,去创建一个
J. Chalupský | Libor Juha | Harald Sinn | Hirotada Ohashi | Ryszard Sobierajski | Takahisa Koyama | Makina Yabashi | Yuichi Inubushi | S. Bajt | Michael Störmer | Jerome Gaudin | Věra Hájková | Tomáš Burian | Kensuke Tono | Adrian P. Mancuso | Andrew Aquila | C. Ozkan | H. Sinn | A. Mancuso | S. Bajt | A. Aquila | Y. Inubushi | K. Tono | M. Yabashi | T. Tschentscher | J. Chalupský | V. Hájková | L. Juha | R. Sobierajski | J. Gaudin | T. Burian | M. Störmer | T. Koyama | C. Ozkan | P. Dłużewski | Thomas Tschentscher | K. Morawiec | Paweł Dłużewski | M. Klepka | H. Ohashi | Marcin T. Klepka | K. Morawiec
[1] Bob Nagler,et al. Comparing different approaches to characterization of focused X-ray laser beams , 2011 .
[2] D. Ratner,et al. Damage threshold of platinum coating used for optics for self-seeding of soft X-ray free electron laser. , 2015, Optics express.
[3] Hidekazu Mimura,et al. Investigation of ablation thresholds of optical materials using 1-µm-focusing beam at hard X-ray free electron laser. , 2013, Optics express.
[4] J. Baró,et al. An algorithm for Monte Carlo simulation of coupled electron-photon transport , 1997 .
[5] J. Chalupský,et al. Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle , 2009 .
[6] T. Ishikawa,et al. Focusing of X-ray free-electron laser pulses with reflective optics , 2012, Nature Photonics.
[7] J. Gaudin,et al. Picosecond time-resolved x-ray refectivity of a laser-heated amorphous carbon film , 2011 .
[8] J. Chalupský,et al. In situ focus characterization by ablation technique to enable optics alignment at an XUV FEL source. , 2013, The Review of scientific instruments.
[9] Zuimin Jiang,et al. Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/C , 1989 .
[10] Valeriy V. Yashchuk,et al. Development, experimental performance and damage properties of x-ray optics for the LCLS free-electron laser , 2013, Europe Optics + Optoelectronics.
[11] J. Sempau,et al. Experimental benchmarks of the Monte Carlo code penelope , 2003 .
[12] J. Chalupský,et al. X-ray laser-induced ablation of lead compounds , 2011, Optics + Optoelectronics.
[13] Richard A. London,et al. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength , 2007 .
[14] Hirotada Ohashi,et al. Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA , 2013 .
[15] Benjawan Kjornrattanawanich,et al. EUV multilayers for solar physics , 2004, SPIE Optics + Photonics.
[16] J. Liu. Simple technique for measurements of pulsed Gaussian-beam spot sizes. , 1982, Optics letters.
[17] T. Ishikawa,et al. A compact X-ray free-electron laser emitting in the sub-ångström region , 2012, Nature Photonics.
[18] Libor Juha,et al. Results from single shot grazing incidence hard x-ray damage measurements conducted at the SACLA FEL , 2013, Europe Optics + Optoelectronics.
[19] Eric M. Gullikson,et al. Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors , 2009, Optics + Optoelectronics.
[20] Kazuto Yamauchi,et al. Damage threshold investigation using grazing incidence irradiation by hard x-ray free electron laser , 2013, Optics & Photonics - Optical Engineering + Applications.
[21] Richard A. London,et al. Computational simulations of high-intensity x-ray matter interaction , 2001, SPIE Optics + Photonics.
[22] R. Konings,et al. The high temperature thermophysical properties of ruthenium and palladium , 1989 .