Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons

The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers. The discovery of GABAB heterodimers started this field rapidly followed by the discovery of heteromerization among isoreceptors of several G protein-coupled receptors such as δ/κ opioid receptors. Heteromerization was also discovered among distinct types of G protein-coupled receptors with the initial demonstration of somatostatin SSTR5/dopamine D2 and adenosine A1/dopamine D1 heteromeric receptor complexes. The functional meaning of these heteromeric complexes is to achieve direct or indirect (via adapter proteins) intramembrane receptor/receptor interactions in the complex. G protein-coupled receptors also form heteromeric complexes involving direct interactions with ion channel receptors, the best example being the GABAA/dopamine D5 receptor heteromerization, as well as with receptor tyrosine kinases and with receptor activity modulating proteins. As an example, adenosine, dopamine, and glutamate metabotropic receptor/receptor interactions in the striatopallidal GABA neurons are discussed as well as their relevance for Parkinson's disease, schizophrenia, and drug dependence. The heterodimer is only one type of heteromeric complex, and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist. These complexes may assist in the process of linking G protein-coupled receptors and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for some forms of learning and memory.

[1]  M. Caron,et al.  Phosphorylation and Palmitoylation of the Human D2L Dopamine Receptor in Sf9 Cells , 1994, Journal of neurochemistry.

[2]  K. Fuxe,et al.  Evidence for Adenosine/Dopamine Receptor Interactions: Indications for Heteromerization , 2000, Neuropsychopharmacology.

[3]  Robert J. Lefkowitz,et al.  Classical and new roles of β-arrestins in the regulation of G-PROTEIN-COUPLED receptors , 2001, Nature Reviews Neuroscience.

[4]  K. Fuxe,et al.  Evidence for Cholecystokinin‐Dopamine Receptor Interactions in the Central Nervous System of the Adult and Old Rat , 1985, Annals of the New York Academy of Sciences.

[5]  G. Koob The Role of the Striatopallidal and Extended Amygdala Systems in Drug Addiction , 1999, Annals of the New York Academy of Sciences.

[6]  N. Bowery,et al.  GABAB receptors: drugs meet clones , 1998, Current Opinion in Neurobiology.

[7]  K. Fuxe,et al.  Autoradiographic evidence for a bradykinin/angiotensin II receptor-receptor interaction in the rat brain , 1993, Neuroscience Letters.

[8]  F. Ciruela,et al.  Adenosine A 2 B Receptors Behave as an Alternative Anchoring Protein for Cell Surface Adenosine Deaminase in Lymphocytes and Cultured Cells , 2000 .

[9]  P. Hedlund,et al.  Effects of adenosine A2A receptor stimulation in vivo on dopamine D3 receptor agonist binding in the rat brain , 1999 .

[10]  S. Sesack,et al.  Ultrastructural immunocytochemical localization of the dopamine D2 receptor within GABAergic neurons of the rat striatum , 1997, Brain Research.

[11]  D. Linden,et al.  Homer Binds a Novel Proline-Rich Motif and Links Group 1 Metabotropic Glutamate Receptors with IP3 Receptors , 1998, Neuron.

[12]  G. Robertson,et al.  D1 and D2 dopamine receptors differentially increase fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain , 1995, Neuroscience.

[13]  K. Fuxe,et al.  Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A2A and dopamine D2 receptors , 2002, Neuroscience Letters.

[14]  K. Fuxe,et al.  Postsynaptic antagonistic interaction between adenosine A1, and dopamine D1 receptors , 1994, Neuroreport.

[15]  D. Malec Haloperidol-induced catalepsy is influenced by adenosine receptor antagonists. , 1997, Polish journal of pharmacology.

[16]  M. Morelli,et al.  Cross-sensitization between the motor activating effects of bromocriptine and caffeine: role of adenosine A2A receptors , 2000, Behavioural Brain Research.

[17]  R. Lefkowitz,et al.  Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. , 2001, Current opinion in cell biology.

[18]  Garrett E. Alexander Basal ganglia , 1998 .

[19]  J. Vincent,et al.  Reduction of dopamine D2 receptor transduction by activation of adenosine A2a receptors in stablyA2a/D2 (long-form) receptor co-transfected mouse fibroblast cell lines: Studies on intracellular calcium levels , 1995, Neuroscience.

[20]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[21]  S. Coughlin,et al.  PAR3 is a cofactor for PAR4 activation by thrombin , 2000, Nature.

[22]  J. Wierońska,et al.  Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats , 2001, Neuropharmacology.

[23]  A. Kastin,et al.  CNS effects of somatostatin. , 1978, Metabolism: clinical and experimental.

[24]  J. Bockaert,et al.  Molecular tinkering of G protein‐coupled receptors: an evolutionary success , 1999, The EMBO journal.

[25]  R. Roth,et al.  The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia , 1999, Neuropsychopharmacology.

[26]  R. Andrew,et al.  ATP inhibits glutamate synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. , 2000, The Journal of pharmacology and experimental therapeutics.

[27]  M. Dragunow,et al.  Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. , 1995, Pharmacological reviews.

[28]  S. Rees,et al.  Monitoring Receptor Oligomerization Using Time-resolved Fluorescence Resonance Energy Transfer and Bioluminescence Resonance Energy Transfer , 2001, The Journal of Biological Chemistry.

[29]  M. Zarbin,et al.  Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  F. Ciruela,et al.  Immunological identification of A1 adenosine receptors in brain cortex , 1995, Journal of neuroscience research.

[31]  N. Zahniser,et al.  Modulation of endogenous GABA release by an antagonistic adenosine A1 / dopamine D1 receptor interaction in rat brain limbic regions but not basal ganglia , 1999, Synapse.

[32]  M. Low,et al.  Functional Uncoupling of Adenosine A2A Receptors and Reduced Response to Caffeine in Mice Lacking Dopamine D2Receptors , 2000, The Journal of Neuroscience.

[33]  S. Coughlin,et al.  PAR 3 is a cofactor for PAR 4 activation by thrombin , 2022 .

[34]  W. Hauber,et al.  Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A2A receptors in the caudate‐putamen of rats , 2001, The European journal of neuroscience.

[35]  T. Shindou,et al.  The role of adenosine A2a receptors in regulating GABAergic synaptic transmission in striatal medium spiny neurons. , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  J. Gutkind,et al.  Gα12- and Gα13-Subunits of Heterotrimeric G-Proteins A Novel Family of Oncogenes , 1998 .

[37]  P J Richardson,et al.  Desensitisation of the Adenosine A1 Receptor by the A2A Receptor in the Rat Striatum , 1997, Journal of neurochemistry.

[38]  H. Lother,et al.  Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness , 2001, Nature Medicine.

[39]  F. Marshall,et al.  GABAB receptors - the first 7TM heterodimers. , 1999, Trends in pharmacological sciences.

[40]  Charles J. Wilson,et al.  Chapter II The basal ganglia , 1996 .

[41]  K. Fuxe,et al.  l-Glutamate reduces the affinity of [3H]N-propylnorapomorphine binding sites in striatal membranes. , 1984, European journal of pharmacology.

[42]  Carey J. Denholm 2000 and Beyond , 1990 .

[43]  Robert J. Lefkowitz,et al.  Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. Fuxe,et al.  Pertussis toxin treatment counteracts intramembrane interactions between neuropeptide Y receptors and alpha 2-adrenoceptors. , 1989, European journal of pharmacology.

[45]  M. Sheng,et al.  The Shank family of scaffold proteins. , 2000, Journal of cell science.

[46]  R. Lefkowitz,et al.  Beta-Arrestins: new roles in regulating heptahelical receptors' functions. , 2001, Cellular signalling.

[47]  Melanie G. Lee,et al.  RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor , 1998, Nature.

[48]  B. Bloch,et al.  D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum , 1995, The Journal of comparative neurology.

[49]  B. O'dowd,et al.  Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. , 2000, The Journal of biological chemistry.

[50]  S. Hyman,et al.  Proenkephalin gene regulation in the neuroendocrine hypothalamus: a model of gene regulation in the CNS. , 1995, The American journal of physiology.

[51]  P. Greengard,et al.  Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine , 2002, Nature.

[52]  P. Goldman-Rakic,et al.  Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. , 2000, Science.

[53]  K. Fuxe,et al.  Neuropeptide Y/angiotensin II interactions in central cardiovascular regulation of the rat , 1991, Brain Research.

[54]  R. Lefkowitz,et al.  Negative cooperativity among beta-adrenergic receptors in frog erythrocyte membranes. , 1976, The Journal of biological chemistry.

[55]  H. Friesen,et al.  Somatostatin and thyrotropin releasing hormone: Central effect on sleep and motor system , 1976, Pharmacology Biochemistry and Behavior.

[56]  Jean-Charles Sanchez,et al.  Proteomics: new perspectives, new biomedical opportunities , 2000, The Lancet.

[57]  K. Fuxe,et al.  Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3H-N-propylnorapomorphine binding sites. , 1983, Acta physiologica Scandinavica.

[58]  E. Richelson,et al.  Characterization of the Genomic Structure, Promoter Region, and a Tetranucleotide Repeat Polymorphism of the Human Neurotensin Receptor Gene* , 1997, The Journal of Biological Chemistry.

[59]  T. Hökfelt,et al.  Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. , 1981, Acta physiologica Scandinavica.

[60]  S. Fenu,et al.  Motor stimulant effects of caffeine in 6‐hydroxydopamine‐lesioned rats are dependent on previous stimulation of dopamine receptors: a different role of D1 and D2 receptors , 1998, The European journal of neuroscience.

[61]  P. Barnes,et al.  Effects of adenosine on autonomic control of heart rate in man. , 1987, Acta physiologica Scandinavica.

[62]  Shigetada Nakanishi,et al.  Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain , 1993, Neuroscience Letters.

[63]  K. Fuxe,et al.  Neuropeptides, excitatory amino acid and adenosine A2 receptors regulate D2 receptors via intramembrane receptor-receptor interactions. Relevance for Parkinson's disease and schizophrenia , 1992, Neurochemistry International.

[64]  S. Latini,et al.  Adenosine in the central nervous system: release mechanisms and extracellular concentrations , 2001, Journal of neurochemistry.

[65]  J. F. Chen,et al.  The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Changeux,et al.  Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors , 2001, Current Opinion in Neurobiology.

[67]  K. Fuxe,et al.  Adenosine A1 Receptor-mediated Modulation of Dopamine D1 Receptors in Stably Cotransfected Fibroblast Cells* , 1998, The Journal of Biological Chemistry.

[68]  B B Fredholm,et al.  Adenosine A2A receptors modulate the binding characteristics of dopamine D2 receptors in stably cotransfected fibroblast cells. , 1996, European journal of pharmacology.

[69]  K. Fuxe,et al.  The Selective mGlu5 Receptor Agonist CHPG Inhibits Quinpirole-Induced Turning in 6-Hydroxydopamine-Lesioned Rats and Modulates the Binding Characteristics of Dopamine D2 Receptors in the Rat Striatum Interactions with Adenosine A2a Receptors , 2001, Neuropsychopharmacology.

[70]  J. Venter,et al.  The size of the mammalian lung beta 2-adrenergic receptor as determined by target size analysis and immunoaffinity chromatography. , 1982, Biochemical and biophysical research communications.

[71]  J. Mallol,et al.  Solubilization of A1 adenosine receptor from pig brain: Characterization and evidence of the role of the cell membrane on the coexistence of high‐ and low‐affinity states , 1990, Journal of neuroscience research.

[72]  P. Svenningsson,et al.  Opposite tonic modulation of dopamine and adenosine on c-fos gene expression in striatopallidal neurons , 1999, Neuroscience.

[73]  U. Ungerstedt,et al.  Receptor‐Receptor Interactions and Their Relevance for Receptor Diversity , 1995, Annals of the New York Academy of Sciences.

[74]  K. Fuxe,et al.  Reduction of [3H]nicotine binding by clonidine in membrane preparations of the rat cerebral cortex. , 1988, Acta physiologica Scandinavica.

[75]  F E Cohen,et al.  Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. , 1998, Science.

[76]  P. d'Alcantara,et al.  Inactivation of adenosine A2A receptor impairs long term potentiation in the accumbens nucleus without altering basal synaptic transmission , 2001, Neuroscience.

[77]  K. Fuxe,et al.  Galanin/5-HT interactions in the rat central nervous system. Relevance for depression , 1991 .

[78]  Lakshmi A Devi,et al.  Opioids and Their Complicated Receptor Complexes , 2000, Neuropsychopharmacology.

[79]  K. Fuxe,et al.  Neurotensin and cholecystokinin octapeptide control synergistically dopamine release and dopamine D2 receptor affinity in rat neostriatum. , 1993, European journal of pharmacology.

[80]  Molly M. Huntsman,et al.  Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the γ-amino butyrate type A receptor in prefrontal cortex of schizophrenics , 1998 .

[81]  T. Duke,et al.  Heightened sensitivity of a lattice of membrane receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J Engel,et al.  Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices. , 1999, Biochemistry.

[83]  T. Bártfai,et al.  Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland , 1982, Nature.

[84]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[85]  F. Ciruela,et al.  Involvement of caveolin in ligand-induced recruitment and internalization of A(1) adenosine receptor and adenosine deaminase in an epithelial cell line. , 2001, Molecular pharmacology.

[86]  S. Ferré,et al.  Adenosine as a volume transmission signal. A feedback detector of neuronal activation. , 2000, Progress in brain research.

[87]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[88]  Kenneth A. Jones,et al.  GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2 , 1998, Nature.

[89]  S. Ferré,et al.  GABA-Dopamine Receptor-Receptor Interactions in Neostriatal Membranes of the Rat , 1997, Neurochemical Research.

[90]  K. Beaumont,et al.  Expression cloning and receptor pharmacology of human calcitonin receptors from MCF-7 cells and their relationship to amylin receptors. , 1997, Molecular pharmacology.

[91]  C. Heldin,et al.  Dimerization of cell surface receptors in signal transduction , 1995, Cell.

[92]  B. E. Garrett,et al.  Caffeine cross-tolerance to selective dopamine D1 and D2 receptor agonists but not to their synergistic interaction. , 1994, European journal of pharmacology.

[93]  R. Iyengar,et al.  The hepatic glucagon receptor. Solubilization, characterization, and development of an affinity adsorption assay for the soluble receptor. , 1984, The Journal of biological chemistry.

[94]  M. Hollenberg Structure‐activity relationships for transmembrane signaling: the receptor's turn , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[95]  K. Fuxe,et al.  Selective modulation of the NPY receptors of the Y2 subtype by α2 receptors in the nucleus tractus solitarii of the rat. A cardiovascular and quantitative receptor autoradiographical analysis , 1994, Brain Research.

[96]  S. Gauthier,et al.  Neurobehavioral effects of intrathecal somatostatinergic treatment in subhuman primates , 1988, Neurology.

[97]  B B Fredholm,et al.  Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. , 1995, Pharmacology & toxicology.

[98]  B. McEwen,et al.  Modulation by vasoactive intestinal peptide of serotonin1 receptors in the dorsal hippocampus of the rat brain: An autoradiographic study , 1983, Neuroscience Letters.

[99]  K. Fuxe,et al.  Adenosine-dopamine interactions in the brain , 1992, Neuroscience.

[100]  P. Svenningsson,et al.  Distribution, biochemistry and function of striatal adenosine A2A receptors , 1999, Progress in Neurobiology.

[101]  R. Corbett,et al.  Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. , 1996, European journal of pharmacology.

[102]  A. Hanyaloglu,et al.  Constitutive and Agonist-dependent Homo-oligomerization of the Thyrotropin-releasing Hormone Receptor , 2001, The Journal of Biological Chemistry.

[103]  K. Fuxe,et al.  Receptor-Receptor Interactions , 1987, Wenner-Gren Center International Symposium Series.

[104]  K. Fuxe,et al.  Receptor-receptor interactions : a new intramembrane integrative mechanism : proceedings of an international symposium held at the Wenner-Gren Center, Stockholm, October 9th-11th, 1986 , 1987 .

[105]  K. Fuxe,et al.  Antagonistic regulation of α2-adrenoceptors by neuropeptide Y receptor subtypes in the nucleus tractus solitarii , 1994 .

[106]  A. Maiorana,et al.  Insulin Resistance and Insulin-Like Growth Factors in Children with Intrauterine Growth Retardation , 2004, Hormone Research in Paediatrics.

[107]  K. Fuxe,et al.  Neuromedin N is a potent modulator of dopamine D2 receptor agonist binding in rat neostriatal membranes , 1993, Neuroscience Letters.

[108]  S. Ferré,et al.  Dopamine-independent and adenosine-dependent mechanisms involved in the effects of N-methyl-D-aspartate on motor activity in mice. , 1995, European journal of pharmacology.

[109]  B. O'dowd,et al.  Oligomerization of Dopamine and Serotonin Receptors , 2000, Neuropsychopharmacology.

[110]  T. Kohout,et al.  beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[111]  M. Morelli,et al.  Motor stimulant effects of the adenosine A(2A) receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. , 2001, Synapse.

[112]  C. Lluis,et al.  Adenosine A(1) receptor in cultured neurons from rat cerebral cortex: colocalization with adenosine deaminase. , 2002, Journal of neurochemistry.

[113]  P S Goldman-Rakic,et al.  Association of m1 and m2 muscarinic receptor proteins with asymmetric synapses in the primate cerebral cortex: morphological evidence for cholinergic modulation of excitatory neurotransmission. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[114]  J. Wess,et al.  Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular "cross-talk" between G-protein-linked receptors. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[115]  P. Seeman,et al.  Dopamine D2 receptor dimers and receptor-blocking peptides. , 1996, Biochemical and biophysical research communications.

[116]  K. Fuxe,et al.  Reduction of [3H]nicotine binding in hypothalamic and cortical membranes by dopamine D1 receptors. , 1989, Acta physiologica Scandinavica.

[117]  J. Kehr,et al.  Adenosine A2A and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum , 1999, Neuropharmacology.

[118]  T Pawson,et al.  SH2 domains, interaction modules and cellular wiring. , 2001, Trends in cell biology.

[119]  T. Heffner,et al.  Comparison of the behavioral effects of adenosine agonists and dopamine antagonists in mice , 2004, Psychopharmacology.

[120]  K. Fuxe,et al.  Intramembrane receptor-receptor interactions: integration of signal transduction pathways in the nervous system , 1993, Neurochemistry International.

[121]  P. Goldman-Rakic,et al.  Functional and anatomical aspects of prefrontal pathology in schizophrenia. , 1997, Schizophrenia bulletin.

[122]  K. Fuxe,et al.  Evidence for interactions between [3H]glutamate and [3H]kainic acid binding sites in rat striatal membranes. Possible relevance for kainic acid neurotoxicity , 1983, Neuroscience Letters.

[123]  Sergi Ferré,et al.  Antagonistic A2a/D2 receptor interactions in the striatum as a basis for adenosine/dopamine interactions in the central nervous system , 1993 .

[124]  L F Agnati,et al.  Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing's B-type machine. , 2000, Progress in brain research.

[125]  C. Romano,et al.  Metabotropic Glutamate Receptor 5 Is a Disulfide-linked Dimer* , 1996, The Journal of Biological Chemistry.

[126]  U. Ungerstedt,et al.  Caffeine produces contralateral rotation in rats with unilateral dopamine denervation: comparisons with apomorphine-induced responses , 2004, Psychopharmacology.

[127]  S. Ögren The Behavioural Pharmacology of Typical and Atypical Antipsychotic Drugs , 1996 .

[128]  Pierre Corvol,et al.  Polar Residues in the Transmembrane Domains of the Type 1 Angiotensin II Receptor Are Required for Binding and Coupling , 1996, The Journal of Biological Chemistry.

[129]  K. Yamamoto,et al.  Hold 'em and fold 'em: chaperones and signal transduction. , 1995, Science.

[130]  R. Idzerda,et al.  Loss of haloperidol induced gene expression and catalepsy in protein kinase A-deficient mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[131]  F. Ciruela,et al.  Homer-1c/Vesl-1L Modulates the Cell Surface Targeting of Metabotropic Glutamate Receptor Type 1α: Evidence for an Anchoring Function , 2000, Molecular and Cellular Neuroscience.

[132]  B. Parsons,et al.  Adenosine receptor antagonists potentiate dopamine receptor agonist-induced rotational behavior in 6-hydroxydopamine-lesioned rats , 1993, Brain Research.

[133]  L. Agnati,et al.  Regulation of dopamine D2 receptor affinity by cholecystokinin octapeptide in fibroblast cells cotransfected with human CCKB and D2L receptor cDNAs. , 1996, Brain research. Molecular brain research.

[134]  A. Montecucco,et al.  Potentiation of dopamine‐induced cAMP formation by group I metabotropic glutamate receptors via protein kinase C in cultured striatal neurons , 1998, The European journal of neuroscience.

[135]  F. Ciruela,et al.  Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. , 2001, Molecular pharmacology.

[136]  J. Scott,et al.  A-kinase anchoring proteins: protein kinase A and beyond. , 2000, Current opinion in cell biology.

[137]  C. Lluis,et al.  Enzymatic and extraenzymatic role of ecto‐adenosine deaminase in lymphocytes , 1998, Immunological reviews.

[138]  K. Fuxe,et al.  Differential Effects of lntrastriatal Neurotensin(1–13) and Neurotensin(8–13) on Striatal Dopamine and Pallidal GABA Release. A Dual‐probe Microdialysis Study in the Awake Rat , 1997, The European journal of neuroscience.

[139]  A. D. Smith,et al.  Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy , 1995, Neuroscience.

[140]  B B Fredholm,et al.  Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Fraser Cm,et al.  beta-Adrenergic receptor isolation and characterization with immobilized drugs and monoclonal antibodies. , 1983 .

[142]  Rafael Franco,et al.  Adenosine deaminase affects ligand‐induced signalling by interacting with cell surface adenosine receptors , 1996, FEBS letters.

[143]  M. Caron,et al.  Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. , 1999, Science.

[144]  Biochemical characterization of the intramembrane interaction between neurotensin and dopamine D2 receptors in the rat brain. , 1991, Brain research.

[145]  R. Lefkowitz,et al.  Beta-adrenergic receptors: evidence for negative cooperativity. , 1975, Biochemical and biophysical research communications.

[146]  T. Pawson,et al.  Signaling through scaffold, anchoring, and adaptor proteins. , 1997, Science.

[147]  Iain D.C. Fraser,et al.  Assembly of an A kinase-anchoring protein–β2-adrenergic receptor complex facilitates receptor phosphorylation and signaling , 2000, Current Biology.

[148]  K. Fuxe,et al.  Galanin and 5‐HT1A Receptor Interactions as an Integrative Mechanism in 5‐HT Neurotransmission in the Brain a , 1996, Annals of the New York Academy of Sciences.

[149]  L. Devi,et al.  Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[150]  U. Ungerstedt,et al.  Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with DOPA and dopamine receptor agonists. , 1974, Medical biology.

[151]  U. Ungerstedt,et al.  Neurotensin counteracts apomorphine-induced inhibition of dopamine release as studied by microdialysis in rat neostriatum , 1989, Brain Research.

[152]  K. Neve,et al.  Constitutive activity of a chimeric D2/D1 dopamine receptor. , 1997, Molecular pharmacology.

[153]  J. Stewart,et al.  Conversion of a gonadotropin-releasing hormone antagonist to an agonist , 1982, Nature.

[154]  S. Snyder,et al.  Adenosine as a neuromodulator. , 1985, Annual review of neuroscience.

[155]  E. Rodríguez-Martín,et al.  Dopamine enhances somatostatin receptor‐mediated inhibition of adenylate cyclase in rat striatum and hippocampus , 1997, Journal of neuroscience research.

[156]  K. Fuxe,et al.  Evidence for the existence of receptor--receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. , 1983, Journal of neural transmission. Supplementum.

[157]  R. Mayfield,et al.  Opposing actions of adenosine A2a and dopamine D2 receptor activation on GABA release in the basal ganglia: Evidence for an A2a/D2 receptor interaction in globus pallidus , 1996, Synapse.

[158]  K. Fuxe,et al.  Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum , 1992, Brain Research.

[159]  D. Standaert,et al.  Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[160]  K. Fuxe,et al.  Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. , 2003, Journal of neural transmission. Supplementum.

[161]  F. Ciruela,et al.  Cell surface adenosine deaminase: Much more than an ectoenzyme , 1997, Progress in Neurobiology.

[162]  M. Caron,et al.  Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition. , 1993, Biochemistry.

[163]  M. Ochi,et al.  Adenosine A(2A) receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. , 2000, European journal of pharmacology.

[164]  P. Jenner,et al.  Combined Use of the Adenosine A2A Antagonist KW-6002 with l -DOPA or with Selective D1 or D2 Dopamine Agonists Increases Antiparkinsonian Activity but Not Dyskinesia in MPTP-Treated Monkeys , 2000, Experimental Neurology.

[165]  K. Fuxe,et al.  Modulation of Dopamine D1 and D2 Transmission Lines in the Central Nervous System , 1990 .

[166]  J. Penney,et al.  Differential expression of mGluR5 metabotropic glutamate receptor mRNA by rat striatal neurons , 1995, The Journal of comparative neurology.

[167]  H. Normile,et al.  Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression , 1993, Brain Research Bulletin.

[168]  D. Storm,et al.  Making New Connections Role of ERK/MAP Kinase Signaling in Neuronal Plasticity , 1999, Neuron.

[169]  R A Challiss,et al.  Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. , 2001, The Biochemical journal.

[170]  J. Dickenson,et al.  Influence of receptor number on functional responses elicited by agonists acting at the human adenosine A(1) receptor: evidence for signaling pathway-dependent changes in agonist potency and relative intrinsic activity. , 2000, Molecular pharmacology.

[171]  K. Fuxe,et al.  Aspects of neural plasticity in the central nervous system—VII. Theoretical aspects of brain communication and computation , 1990, Neurochemistry International.

[172]  M. Cohn,et al.  ‘Barrel rotation’ induced by somatostatin in the non-lesioned rat , 1975, Brain Research.

[173]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[174]  P. Svenningsson,et al.  Adenosine A2A Receptors are Colocalized with and Activate Golf in Rat Striatum , 2000 .

[175]  K. Fuxe,et al.  Adenosine A2A Agonists: A Potential New Type of Atypical Antipsychotic , 1997, Neuropsychopharmacology.

[176]  F. Marshall Heterodimerization of G-protein-coupled receptors in the CNS. , 2001, Current opinion in pharmacology.

[177]  R. Caputto,et al.  Neural transmission, learning, and memory , 1983 .

[178]  Roger L Albin,et al.  Localization of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons , 1998, Brain Research.

[179]  K. Fuxe,et al.  Galanin‐(1‐16) modulates 5‐HTIA receptors in the ventral limbic cortex of the rat , 2000, Neuroreport.

[180]  E. Wilson,et al.  Hormone-dependent Transactivation by the Human Androgen Receptor Is Regulated by a dnaJ Protein (*) , 1995, The Journal of Biological Chemistry.

[181]  D. Dorsa,et al.  Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-HT4 or 5-HT6 receptors following antipsychotic administration , 1999, Neuroscience.

[182]  M. Amalric,et al.  Chronic But Not Acute Treatment with a Metabotropic Glutamate 5 Receptor Antagonist Reverses the Akinetic Deficits in a Rat Model of Parkinsonism , 2002, The Journal of Neuroscience.

[183]  K. Fuxe,et al.  Antagonistic Oxytocin/α2‐Adrenoreceptor Interactions in the Nucleus Tractus Solitarii: Relevance for Central Cardiovascular Control , 2000, Journal of neuroendocrinology.

[184]  A G Cochran,et al.  Antagonists of protein-protein interactions. , 2000, Chemistry & biology.

[185]  Michele Zoli,et al.  Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors* , 2002, The Journal of Biological Chemistry.

[186]  G. Milligan,et al.  Protein-protein interactions at G-protein-coupled receptors. , 2001, Trends in pharmacological sciences.

[187]  K. Fuxe,et al.  Molecular Basis of Learning and Memory: Modelling Based on Receptor Mosaics , 2002 .

[188]  A. Carlsson,et al.  Interactions between glutamatergic and monoaminergic systems within the basal ganglia-implications for schizophrenia and Parkinson's disease , 1990, Trends in Neurosciences.

[189]  L. Grégoire,et al.  Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys , 1999, Neurology.

[190]  M. Caporali,et al.  Akinesia due to catecholamine depletion in mice is prevented by caffeine. Further evidence for an involvement of adenosinergic system in the control of motility , 1991, The Journal of pharmacy and pharmacology.

[191]  A. Spiegel G Proteins, Receptors, and Disease , 1998, Contemporary Endocrinology.

[192]  Kohjiro Ueki,et al.  Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone , 1997, Nature.

[193]  K. Fuxe,et al.  Intramembrane Interactions between Neurotensin Receptors and Dopamine D2 Receptors as a Major Mechanism for the Neuroleptic‐like Action of Neurotensin a , 1992, Annals of the New York Academy of Sciences.

[194]  P. Greengard,et al.  Activation of dopamine D2 receptors decreases DARPP-32 phosphorylation in striatonigral and striatopallidal projection neurons via different mechanisms , 1999, Neuroscience.

[195]  P. Jenner,et al.  Alterations in preproenkephalin and adenosine‐2a receptor mRNA, but not preprotachykinin mRNA correlate with occurrence of dyskinesia in normal monkeys chronically treated with l‐DOPA , 2000, The European journal of neuroscience.

[196]  Y. Jan,et al.  A Trafficking Checkpoint Controls GABAB Receptor Heterodimerization , 2000, Neuron.

[197]  J. Glowinski,et al.  Modulation by Monoamines of Somatostatin‐Sensitive Adenylate Cyclase on Neuronal and Glial Cells from the Mouse Brain in Primary Cultures , 1985, Journal of neurochemistry.

[198]  P. Somogyi,et al.  Immunocytochemical Localization of the α1 and β2/3 Subunits of the GABAA Receptor in Relation to Specific GABAergic Synapses in the Dentate Gyrus , 1995 .

[199]  U. Ungerstedt,et al.  Dopamine D1 Receptor‐mediated Facilitation of GABAergic Neurotransmission in the Rat Strioentopeduncular Pathway and its Modulation by Adenosine A1 Receptor‐mediated Mechanisms , 1996, The European journal of neuroscience.

[200]  P. Goldman-Rakic,et al.  Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[201]  K. Fuxe,et al.  Activation of 5-hydroxytryptamine1A receptors increases the affinity of galanin receptors in di- and telencephalic areas of the rat , 1991, Brain Research.

[202]  F. Ciruela,et al.  The cluster-arranged cooperative model: a model that accounts for the kinetics of binding to A1 adenosine receptors. , 1996, Biochemistry.

[203]  B. Kieffer Opioids: first lessons from knockout mice. , 1999, Trends in pharmacological sciences.

[204]  O. Manzoni,et al.  Decreased Presynaptic Sensitivity to Adenosine after Cocaine Withdrawal , 1998, The Journal of Neuroscience.

[205]  R. Wallace Dopamine D1 receptor , 1996 .

[206]  K. Fuxe,et al.  Aspects on the information handling by the central nervous system: focus on cotransmission in the aged rat brain. , 1986, Progress in brain research.

[207]  K. Fuxe,et al.  Cholecystokinin/dopamine/GABA interactions in the nucleus accumbens: biochemical and functional correlates , 2001, Peptides.

[208]  P. Jenner,et al.  Adenosine A2A Antagonist: A novel antiparkinsonian agent that does not provoke dyskinesia in Parkinsonian monkeys , 1998, Annals of neurology.

[209]  P. Popoli,et al.  Modulation of striatal adenosine A1 and A2 receptors induces rotational behaviour in response to dopaminergic stimulation in intact rats. , 1994, European journal of pharmacology.

[210]  B. Borowsky,et al.  GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. , 1998, Nature.

[211]  S. Grant,et al.  Proteomics of multiprotein complexes: answering fundamental questions in neuroscience. , 2001, Trends in biotechnology.

[212]  M. Mirabet,et al.  Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation. , 1999, Journal of cell science.

[213]  Jilly F. Evans,et al.  Identification of a GABAB Receptor Subunit, gb2, Required for Functional GABAB Receptor Activity* , 1999, The Journal of Biological Chemistry.

[214]  L F Agnati,et al.  Adenosine A2A agonist CGS 21680 decreases the affinity of dopamine D2 receptors for dopamine in human striatum , 2001, Neuroreport.

[215]  S. Hyman,et al.  Addiction, Dopamine, and the Molecular Mechanisms of Memory , 2000, Neuron.

[216]  K. Fuxe,et al.  Bradykinin modulation of α 2-Adrenoceptors in the nucleus tractus solitarii of the rat. An in vitro autoradiographical study , 1995, Neuropharmacology.

[217]  U. Ungerstedt,et al.  Neurotensin peptides antagonistically regulate postsynaptic dopamine D2 receptors in rat nucleus accumbens: a receptor binding and microdialysis study , 2005, Journal of Neural Transmission / General Section JNT.

[218]  B B Fredholm,et al.  Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. , 1999, Biochemical pharmacology.

[219]  P. Greengard,et al.  Beyond the Dopamine Receptor: Review the DARPP-32/Protein Phosphatase-1 Cascade , 1999 .

[220]  E. Keverne GABA-ergic neurons and the neurobiology of schizophrenia and other psychoses , 1999, Brain Research Bulletin.

[221]  K. Fuxe,et al.  The C-terminal neurotensin-(8-13) fragment potently modulates rat neostriatal dopamine D2 receptors. , 1993, European journal of pharmacology.

[222]  B. O'dowd,et al.  Oligomerization of μ- and δ-Opioid Receptors , 2000, The Journal of Biological Chemistry.

[223]  R. Bahnson,et al.  Pharmacological modulators of DNA-interactive antitumor drugs. , 1989, Trends in pharmacological sciences.

[224]  K. Fuxe,et al.  Aspects on the Integrative Capabilities of the Central Nervous System: Evidence for ‘Volume Transmission’ and its Possible Relevance for Receptor-Receptor Interactions , 1987 .

[225]  R. Shigemoto,et al.  GABAB-receptor subtypes assemble into functional heteromeric complexes , 1998, Nature.

[226]  U. Kumar,et al.  Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. , 2000, Science.

[227]  Holger Husi,et al.  Proteomics of the nervous system , 2001, Trends in Neurosciences.

[228]  J. Schlessinger,et al.  Signal transduction by allosteric receptor oligomerization. , 1988, Trends in biochemical sciences.

[229]  K. Fuxe,et al.  Dopamine D1 receptors are involved in the modulation of D2 receptors induced by cholecystokinin receptor subtypes in rat neostriatal membranes , 1994, Brain Research.

[230]  P. Seeman,et al.  Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[231]  S. Ferré,et al.  The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. , 2001, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology.

[232]  P. Worley,et al.  Shank, a Novel Family of Postsynaptic Density Proteins that Binds to the NMDA Receptor/PSD-95/GKAP Complex and Cortactin , 1999, Neuron.

[233]  H. Kase,et al.  Inhibition by KF17837 of adenosine A2A receptor‐mediated modulation of striatal GABA and ACh release , 1994, British journal of pharmacology.

[234]  K. Fuxe,et al.  Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites , 1996, Neuroscience Letters.

[235]  S. R. Nash,et al.  Dopamine receptors: from structure to function. , 1998, Physiological reviews.

[236]  K. Fuxe,et al.  Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex , 1988, Neuroscience Letters.

[237]  T. Robinson,et al.  Amphetamine and cocaine induce different patterns of c‐fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context , 2001, The European journal of neuroscience.

[238]  P. Svenningsson,et al.  Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. , 2000, Molecular pharmacology.

[239]  H. Fibiger,et al.  Neuroleptics increase C-FOS expression in the forebrain: Contrasting effects of haloperidol and clozapine , 1992, Neuroscience.

[240]  S. Shiozaki,et al.  KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. , 1994, European journal of pharmacology.

[241]  K. Fuxe,et al.  Opposing actions of an adenosine A2 receptor agonist and a GTP analogue on the regulation of dopamine D2 receptors in rat neostriatal membranes. , 1993, European journal of pharmacology.

[242]  Y C Kuo,et al.  Regulation of cell proliferation, gene expression, production of cytokines, and cell cycle progression in primary human T lymphocytes by piperlactam S isolated from Piper kadsura. , 2000, Molecular pharmacology.

[243]  S. Ferré Adenosine-dopamine interactions in the ventral striatum Implications for the treatment of schizophrenia , 1997, Psychopharmacology.

[244]  P. Sexton,et al.  Characterization of amylin and calcitonin receptor binding in the mouse alpha-thyroid-stimulating hormone thyrotroph cell line. , 1997, Endocrinology.

[245]  F. Ciruela,et al.  Metabotropic Glutamate 1α and Adenosine A1 Receptors Assemble into Functionally Interacting Complexes* , 2001, The Journal of Biological Chemistry.

[246]  B. Evers,et al.  Characterization of promoter elements required for cell-specific expression of the neurotensin/neuromedin N gene in a human endocrine cell line , 1995, Molecular and cellular biology.

[247]  E I Canela,et al.  Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[248]  Michel Bouvier,et al.  Oligomerization of G-protein-coupled transmitter receptors , 2001, Nature Reviews Neuroscience.

[249]  D. Dorsa,et al.  Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[250]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[251]  Bruno Apolloni,et al.  From Synapses to Rules: Discovering Symbolic Rules from Neural Processed Data , 2002 .

[252]  J. Morrison,et al.  Expression of Dopamine D3 Receptor Dimers and Tetramers in Brain and in Transfected Cells* , 1997, The Journal of Biological Chemistry.

[253]  K. Fuxe,et al.  Stimulation of adenosine A2 receptors induces catalepsy , 1991, Neuroscience Letters.

[254]  U. Ungerstedt,et al.  Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice. , 1991, European journal of pharmacology.

[255]  Tony Pawson,et al.  Protein modules and signalling networks , 1995, Nature.

[256]  B. Fredholm,et al.  Adenosine and dopamine receptor antagonist binding in the rat ventral and dorsal striatum: lack of changes after a neonatal bilateral lesion of the ventral hippocampus , 1999, Neurochemistry International.

[257]  F. F. Weight,et al.  Single K+ channels activated by D2 dopamine receptors in acutely dissociated neurons from rat corpus striatum. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[258]  B. O'dowd,et al.  Oligomerization of opioid receptors: generation of novel signaling units. , 2002, Current opinion in pharmacology.

[259]  E. J. Simon,et al.  Cross-linking of human [125I]beta-endorphin to opioid receptors in rat striatal membranes: biochemical evidence for the existence of a mu/delta opioid receptor complex. , 1990, The Journal of pharmacology and experimental therapeutics.

[260]  U. Ungerstedt,et al.  Involvement of cholecystokinin receptors in the control of striatal dopamine autoreceptors , 1990, Naunyn-Schmiedeberg's Archives of Pharmacology.

[261]  J. Gutkind,et al.  G-protein-coupled receptors and signaling networks: emerging paradigms. , 2001, Trends in pharmacological sciences.

[262]  S. Ögren,et al.  Phencyclidine- and Dizocilpine-Induced Hyperlocomotion Are Differentially Mediated , 1994, Neuropsychopharmacology.

[263]  J. Konieczny,et al.  SCH 58261, an A2A adenosine receptor antagonist, counteracts parkinsonian‐like muscle rigidity in rats , 2001, Synapse.

[264]  P. Greengard,et al.  Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons , 1998, Neuroscience.

[265]  U. Ungerstedt,et al.  The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[266]  S Avissar,et al.  Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[267]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[268]  U. Gether Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. , 2000, Endocrine reviews.

[269]  Yu Tian Wang,et al.  Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors , 2000, Nature.

[270]  M. Iyo,et al.  Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET , 1997, Nature.

[271]  K. Fuxe,et al.  Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia 1 Published on the World Wide Web on 12 January 1998. 1 , 1998, Brain Research Reviews.

[272]  K. Fuxe,et al.  Adenosine/dopamine receptor‐receptor interactions in the central nervous system , 2001 .

[273]  K. Fuxe,et al.  Neuropeptide Y and Central Cardiovascular Regulation , 1990 .

[274]  T. Kenakin Agonist-specific receptor conformations. , 1997, Trends in pharmacological sciences.

[275]  K. Fuxe,et al.  Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[276]  T. Hökfelt,et al.  Aspects on receptor regulation and isoreceptor identification. , 1980, Medical biology.

[277]  K. Fuxe,et al.  Stimulation of adenosine A1 receptors attenuates dopamine D1 receptor‐mediated increase of NGFI‐A, c‐fos and jun‐B mRNA levels in the dopamine‐denervated striatum and dopamine D1 receptor‐mediated turning behaviour , 1999, The European journal of neuroscience.

[278]  B. Fredholm,et al.  International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. , 2001, Pharmacological reviews.

[279]  M. Ochi,et al.  Systemic administration of adenosine A2A receptor antagonist reverses increased GABA release in the globus pallidus of unilateral 6-hydroxydopamine-lesioned rats: a microdialysis study , 2000, Neuroscience.

[280]  J. Sweatt,et al.  The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory , 2001, Journal of neurochemistry.

[281]  M. Caron,et al.  Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. , 1994, European journal of pharmacology.

[282]  Diego Guidolin,et al.  The Receptor Mosaic Hypothesis of the Engram: Possible Relevance of Boolean Network Modelling , 1996, Int. J. Neural Syst..

[283]  B. Bloch,et al.  Expression of the d3 dopamine receptor in peptidergic neurons of the nucleus accumbens: Comparison with the D1 and D2 dopamine receptors , 1996, Neuroscience.

[284]  S. Schiffmann,et al.  Striatal Restricted Adenosine A2 Receptor (RDC8) Is Expressed by Enkephalin but Not by Substance P Neurons: An In Situ Hybridization Histochemistry Study , 1991, Journal of neurochemistry.

[285]  T. Chase,et al.  Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism , 2000, Trends in Neurosciences.

[286]  M. Morelli,et al.  Involvement of Adenosine A2A Receptors in the Induction of C-Fos Expression by Clozapine and Haloperidol , 1999, Neuropsychopharmacology.

[287]  K. Fuxe,et al.  Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine‐denervated striatum , 2000, The European journal of neuroscience.

[288]  Sergi Ferré,et al.  Adenosine–dopamine receptor–receptor interactions as an integrative mechanism in the basal ganglia , 1997, Trends in Neurosciences.

[289]  S. Vincent,et al.  The effects of cysteamine on dopamine-mediated behaviors: Evidence for dopamine-somatostatin interactions in the striatum , 1986, Pharmacology Biochemistry and Behavior.

[290]  T. Kenakin,et al.  Agonist-receptor efficacy. I: Mechanisms of efficacy and receptor promiscuity. , 1995, Trends in pharmacological sciences.

[291]  U. Ungerstedt,et al.  Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia , 1994, Neuroscience.

[292]  M. Delong,et al.  Pathophysiologic basis of surgery for Parkinson's disease. , 2000, Neurology.

[293]  T. Stone,et al.  CNS Neurotransmitters and Neuromodulators: Dopamine , 1996 .

[294]  J. Lacaille,et al.  Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. , 2001, Molecular pharmacology.

[295]  L. Agnati,et al.  Adenosine receptors and Parkinson's disease. Relevance of antagonistic adenosine and dopamine receptor interactions in the striatum. , 2001, Advances in neurology.

[296]  G. Paxinos The Rat nervous system , 1985 .

[297]  Neurology and Neurobiology , 1990 .

[298]  F. Ciruela,et al.  Ecto‐adenosine deaminase: An ecto‐enzyme and a costimulatory protein acting on a variety of cell surface receptors , 1998 .

[299]  P. Leff Receptor-based drug design , 1998 .

[300]  S. Angers,et al.  Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[301]  J. McGinty,et al.  The full D1 dopamine receptor agonist SKF-82958 induces neuropeptide mRNA in the normosensitive striatum of rats: regulation of D1/D2 interactions by muscarinic receptors. , 1997, The Journal of pharmacology and experimental therapeutics.

[302]  M Morfis,et al.  Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. , 1999, Molecular pharmacology.

[303]  C. Nemeroff The interaction of neurotensin with dopaminergic pathways in the central nervous system: Basic neurobiology and implications for the pathogenesis and treatment of schizophrenia , 1986, Psychoneuroendocrinology.

[304]  M. Morelli,et al.  Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas , 1997, Brain Research.

[305]  P. Seeman,et al.  A Transmembrane Domain-derived Peptide Inhibits D1 Dopamine Receptor Function without Affecting Receptor Oligomerization* , 1998, The Journal of Biological Chemistry.

[306]  K. Fuxe,et al.  Neurotensin Decreases the Affinity of Dopamine D2 Agonist Binding by a G Protein‐Independent Mechanism , 1991, Journal of neurochemistry.

[307]  D. Engelman,et al.  Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. , 1992, The Journal of biological chemistry.

[308]  K. Fuxe,et al.  Neuropeptide Y and central cardiovascular regulation. Focus on its role as a cotransmitter in cardiovascular adrenergic neurons. , 1990, Annals of the New York Academy of Sciences.

[309]  J. Linden,et al.  Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system , 1998, The Journal of comparative neurology.

[310]  J. Holaday,et al.  beta-FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence. , 1988, The Journal of pharmacology and experimental therapeutics.

[311]  P A Insel,et al.  Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). , 2000, The Journal of pharmacology and experimental therapeutics.

[312]  S. Ferré,et al.  Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. , 1998, European journal of pharmacology.

[313]  F. Ciruela,et al.  Adenosine Deaminase Interacts with A1 Adenosine Receptors in Pig Brain Cortical Membranes , 1996, Journal of neurochemistry.

[314]  K. Fuxe,et al.  Cholecystokinin peptides in vitro modulate the characteristics of the striatal 3H-N-propylnorapomorphine sites. , 1983, Acta physiologica Scandinavica.

[315]  Ted Abel,et al.  Positive and negative regulatory mechanisms that mediate long-term memory storage 1 Published on the World Wide Web on 13 January 1998. 1 , 1998, Brain Research Reviews.

[316]  E. Poleszak,et al.  Influence of adenosine receptor agonists and antagonists on amphetamine-induced stereotypy in rats. , 2000, Polish Journal of Pharmacology.

[317]  D. Engelman,et al.  Specificity and promiscuity in membrane helix interactions , 1994, FEBS letters.

[318]  C. Larsson,et al.  Acute effects of D1- and D2-receptor agonist and antagonist drugs on somatostatin binding, inhibition of adenylyl cyclase activity and accumulation of inositol 1,4,5-trisphosphate in the rat striatum. , 1997, Brain research. Molecular brain research.

[319]  K. Fuxe,et al.  Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: Counteraction by a NTR1-like receptor antagonist , 2002, Neuroreport.

[320]  M. Caron,et al.  Selective inhibition of adenylyl cyclase type V by the dopamine D3 receptor. , 1997, Molecular pharmacology.

[321]  M. Scarselli,et al.  Pharmacological evidence of muscarinic receptor heterodimerization. , 2000, Pharmaceutica acta Helvetiae.

[322]  C. Müller,et al.  Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. , 2001, Parkinsonism & related disorders.

[323]  P. Sexton,et al.  Characterization of Amylin and Calcitonin Receptor Binding in the Mouse α-Thyroid-Stimulating Hormone Thyrotroph Cell Line. , 1997, Endocrinology.

[324]  J. Kemp,et al.  Effect of metabotropic glutamate receptor activation on receptor-mediated cyclic AMP responses in primary cultures of rat striatal neurones , 1998, Brain Research.

[325]  Luis Serrano,et al.  Rational design of a GCN4-derived mimetic of interleukin-4 , 1999, Nature Structural Biology.

[326]  Z. Bashir,et al.  Cooperation between mglu receptors: a depressing mechanism? , 2002, Trends in Neurosciences.

[327]  J. Fink,et al.  Adenosine antagonists potentiate D2 dopamine-dependent activation of Fos in the striatopallidal pathway , 1995, Neuroscience.

[328]  P. Worley,et al.  Coupling of mGluR/Homer and PSD-95 Complexes by the Shank Family of Postsynaptic Density Proteins , 1999, Neuron.

[329]  K. Fuxe,et al.  Neurotensin reduces the affinity of D-2 dopamine receptors in rat striatal membranes. , 1987, Acta physiologica Scandinavica.

[330]  O. Cordero,et al.  Ecto-ADA in the development of the immune system. , 1998, Immunology today.

[331]  S. Ferré,et al.  Multiple intramembrane receptor-receptor interactions in the regulation of striatal dopamine D2 receptors. , 1999, Neuroreport.

[332]  K. Fuxe,et al.  Galanin/alpha2-receptor interactions in central cardiovascular control , 2000, Neuropharmacology.

[333]  J. Joyce,et al.  Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons , 1999, Neuropsychopharmacology.

[334]  T. Gudermann,et al.  Structural Implication for Receptor Oligomerization from Functional Reconstitution Studies of Mutant V2 Vasopressin Receptors* , 2000, The Journal of Biological Chemistry.

[335]  P. Svenningsson,et al.  Cellular expression of adenosine A2A receptor messenger RNA in the rat central nervous system with special reference to dopamine innervated areas , 1997, Neuroscience.

[336]  Michel Bouvier,et al.  A Peptide Derived from a β2-Adrenergic Receptor Transmembrane Domain Inhibits Both Receptor Dimerization and Activation* , 1996, The Journal of Biological Chemistry.

[337]  K. Fuxe,et al.  Systemic oxytocin treatment modulates α2-adrenoceptors in telencephalic and diencephalic regions of the rat , 2000, Brain Research.

[338]  M. Kwatra,et al.  Regulation of Receptor Function by Protein Phosphorylation , 1990, Annals of the New York Academy of Sciences.

[339]  T. Hunter,et al.  Signaling—2000 and Beyond , 2000, Cell.

[340]  B. O'dowd,et al.  Serotonin 5‐HT1B and 5‐HT1D receptors form homodimers when expressed alone and heterodimers when co‐expressed , 1999, FEBS letters.

[341]  S. Ferré,et al.  Theophylline reverses haloperidol-induced catalepsy in the rat possible relevance to the pharmacological treatment of psychosis , 1988, Biological Psychiatry.

[342]  Luigi F. Agnati,et al.  Receptor‐receptor interactions in the central nervous system. A new integrative mechanism in synapses , 1985, Medicinal research reviews.

[343]  K. Fuxe,et al.  Angiotensin II reduces the affinity of [3H]para-aminoclonidine binding sites in membrane preparations from the rat dorsomedial medulla oblongata. , 1988, Acta physiologica Scandinavica.

[344]  Koji Yamada,et al.  Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP , 1999, Psychopharmacology.

[345]  K. Fuxe,et al.  Heteromerization of Adenosine and Dopamine Receptor Subtypes: Relevance for Neuronal Integration in Normal and Pathological States , 2002 .

[346]  P. Worley,et al.  Homer: a link between neural activity and glutamate receptor function , 2000, Current Opinion in Neurobiology.

[347]  U. Kumar,et al.  The Cytoplasmic Tail of the Human Somatostatin Receptor Type 5 Is Crucial for Interaction with Adenylyl Cyclase and in Mediating Desensitization and Internalization* , 1998, The Journal of Biological Chemistry.

[348]  S. Grant,et al.  Proteomics in Neuroscience: From Protein to Network , 2001, The Journal of Neuroscience.

[349]  J. Vanderhaeghen,et al.  Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[350]  P. Jenner,et al.  Adenosine receptors and Parkinson's disease , 1999 .

[351]  D. Standaert,et al.  Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A2A adenosine receptors , 2000, Neuroscience.

[352]  L. Agnati,et al.  Interactions among adenosine deaminase, adenosine A1 receptors and dopamine D1 receptors in stably cotransfected fibroblast cells and neurons , 2002, Neuroscience.

[353]  M. Besson,et al.  Glutamate Induces Phosphorylation of Elk-1 and CREB, Along with c-fos Activation, via an Extracellular Signal-Regulated Kinase-Dependent Pathway in Brain Slices , 1999, Molecular and Cellular Biology.

[354]  K Fuxe,et al.  Activation of Adensine A1 and A2A Receptors Modulates Dopamine D2 Receptor‐Induced Responses in Stably Transfected Human Neuroblastoma Cells , 2000, Journal of neurochemistry.

[355]  Victor J. Quijano,et al.  Prolactin Decreases Epidermal Growth Factor Receptor Kinase Activity via a Phosphorylation-dependent Mechanism* , 1998, The Journal of Biological Chemistry.

[356]  T. Hökfelt,et al.  Differential modulation by CCK-8 and CCK-4 of [3H]spiperone binding sites linked to dopamine and 5-hydroxytryptamine receptors in the brain of the rat , 1983, Neuroscience Letters.

[357]  H. Nakata,et al.  Heteromeric association creates a P2Y-like adenosine receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[358]  B. Fredholm,et al.  Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[359]  P. Greengard,et al.  Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[360]  B. McEwen,et al.  Modulation by vasoactive intestinal peptide (VIP) of serotonin receptors in membranes from rat hippocampus , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[361]  J. Mallol,et al.  Adenosine Receptors in Myelin Fractions and Subtractions: The Effect of the Agonist (R)‐Phenylisopropyladenosine on Myelin Membrane Microviscosity , 1991, Journal of neurochemistry.

[362]  A. Maggi,et al.  beta-Adrenergic regulation of alpha 2-adrenergic receptors in the central nervous system. , 1980, Science.

[363]  D. Lovinger,et al.  Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. , 2001, Journal of neurophysiology.

[364]  A. Deutch,et al.  Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: The nucleus accumbens shell as a locus of antipsychotic action , 1992, Molecular and Cellular Neuroscience.

[365]  R. Boehm,et al.  Inhibition by adenosine A2A receptors of NMDA but not AMPA currents in rat neostriatal neurons , 2000, British journal of pharmacology.

[366]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[367]  E. M. Adler,et al.  Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. , 1992, Brain research. Molecular brain research.

[368]  Henry A. Lester,et al.  State-dependent cross-inhibition between transmitter-gated cation channels , 2000, Nature.

[369]  Lakshmi A. Devi,et al.  G-protein-coupled receptor heterodimerization modulates receptor function , 1999, Nature.

[370]  R. Morris,et al.  Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein , 1998, Nature.

[371]  U. Kumar,et al.  Subtypes of the Somatostatin Receptor Assemble as Functional Homo- and Heterodimers* , 2000, The Journal of Biological Chemistry.

[372]  P. Jenner,et al.  Adenosine A2A receptors modify motor function in MPTP‐treated common marmosets , 1998, Neuroreport.

[373]  G Burnstock,et al.  Nomenclature and Classification of Purinoceptors* , 2005 .

[374]  S. Ferguson,et al.  Mechanisms of metabotropic glutamate receptor desensitization: role in the patterning of effector enzyme activation , 2002, Neurochemistry International.

[375]  P. Seeman,et al.  Dopamine D2 receptor dimers in human and rat brain , 1998, FEBS letters.

[376]  J. Schlessinger Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[377]  T. Hökfelt,et al.  Neuropeptide Y in vitro selectivity increases the number of alpha 2-adrenergic binding sites in membranes of the medulla oblongata of the rat. , 1983, Acta physiologica Scandinavica.

[378]  Angus C Nairn,et al.  The DARPP-32/protein phosphatase-1 cascade: a model for signal integration 1 Published on the World Wide Web on 22 January 1998. 1 , 1998, Brain Research Reviews.

[379]  U. Ungerstedt,et al.  Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. , 1971, Acta physiologica Scandinavica. Supplementum.

[380]  M. Morelli,et al.  Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6‐hydroxydopamine‐lesioned rats , 2001, Synapse.

[381]  K. Rosenthal,et al.  Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines , 1991, FEBS letters.

[382]  M. Low,et al.  The role of the D2 dopamine receptor (D2R) in A2A adenosine receptor (A2AR)-mediated behavioral and cellular responses as revealed by A2A and D2 receptor knockout mice , 2001 .

[383]  W. Hauber,et al.  Motor depressant effects mediated by dopamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen. , 1997, European journal of pharmacology.

[384]  P. Greengard,et al.  Amplification of dopaminergic signaling by a positive feedback loop. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[385]  K. Neve,et al.  Chimeric D1/D2 dopamine receptors. Distinct determinants of selective efficacy, potency, and signal transduction. , 1994, The Journal of biological chemistry.

[386]  Ronald W. Barrett,et al.  Small Peptides as Potent Mimetics of the Protein Hormone Erythropoietin , 1996, Science.

[387]  G. Chiara,et al.  Adenosine A2 receptors stimulate c-fos expression in striatal neurons of 6-hydroxydopamine-lesioned rats , 1995, Neuroscience.

[388]  P. Popoli,et al.  Effects of SCH 58261, an Adenosine A2A Receptor Antagonist, on Quinpirole-Induced Turning in 6-Hydroxydopamine-Lesioned Rats: Lack of Tolerance after Chronic Caffeine Intake , 2000, Neuropsychopharmacology.

[389]  G. Peterson,et al.  Physical properties of the purified cardiac muscarinic acetylcholine receptor. , 1986, Biochemistry.

[390]  T. Herdegen,et al.  Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins , 1998, Brain Research Reviews.

[391]  U. Bhalla,et al.  Complexity in biological signaling systems. , 1999, Science.

[392]  R. Lefkowitz,et al.  The β2-Adrenergic Receptor Mediates Extracellular Signal-regulated Kinase Activation via Assembly of a Multi-receptor Complex with the Epidermal Growth Factor Receptor* , 2000, The Journal of Biological Chemistry.

[393]  E. Ongini,et al.  Adenosine A2A receptor antagonism potentiates L-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. , 1997, European journal of pharmacology.

[394]  J. Tallman Dimerization of G-Protein-Coupled Receptors: Implications for Drug Design and Signaling , 2000, Neuropsychopharmacology.

[395]  R. Wise,et al.  Rewarding Actions of Phencyclidine and Related Drugs in Nucleus Accumbens Shell and Frontal Cortex , 1996, The Journal of Neuroscience.

[396]  Urs Gerber,et al.  G-protein-independent signaling by G-protein-coupled receptors , 2000, Trends in Neurosciences.

[397]  P. Sokoloff,et al.  D2/D3 Dopamine Receptor Heterodimers Exhibit Unique Functional Properties* , 2001, The Journal of Biological Chemistry.

[398]  J. Linden,et al.  Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum , 2001, The Journal of comparative neurology.

[399]  C Higgs,et al.  Domain swapping in G-protein coupled receptor dimers. , 1998, Protein engineering.

[400]  K. Fuxe,et al.  On the Role of Neuropeptide Y in Information Handling in the Central Nervous System in Normal and Physiopathological States , 1990, Annals of the New York Academy of Sciences.

[401]  Christopher A Reynolds,et al.  Dimerization and Domain Swapping in G-Protein-Coupled Receptors: A Computational Study , 2000, Neuropsychopharmacology.

[402]  K. Fuxe,et al.  Oxytocin/Alpha2-Adrenoceptor Interactions in Feeding Responses , 2000, Neuroendocrinology.

[403]  K. Fuxe,et al.  Strong effects of NT/NN peptides on DA D2 receptors in rat neostriatal sections. , 1994, Neuroreport.

[404]  Hiroshi Kase,et al.  Rescue of Locomotor Impairment in Dopamine D2 Receptor-Deficient Mice by an Adenosine A2A Receptor Antagonist , 2000, The Journal of Neuroscience.

[405]  John Q. Wang,et al.  Group I metabotropic glutamate receptors control phosphorylation of CREB, Elk-1 and ERK via a CaMKII-dependent pathway in rat striatum , 2001, Neuroscience Letters.

[406]  K. Fuxe,et al.  Cholecystokinin Octapeptide In Vitro and Ex Vivo Strongly Modulates Striatal Dopamine D2 Receptors in Rat Forebrain Sections , 1995, The European journal of neuroscience.

[407]  B. Fredholm Purinoceptors in the nervous system. , 1995, Pharmacology & toxicology.

[408]  K. Fuxe,et al.  The non-peptide neuropeptide Y Y1 receptor antagonist BIBP3226 blocks the [Leu31,Pro34]neuropeptide Y-induced modulation of alpha 2-adrenoceptors in the nucleus tractus solitarii of the rat. , 1996, Neuroreport.

[409]  T. Hökfelt,et al.  On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT neurons. Substance P reduces affinity and increases density of 3H-5-HT binding sites. , 1983, Acta physiologica Scandinavica.

[410]  K. Fuxe,et al.  Galanin-(1–15), but not galanin-(1–29), modulates 5-HT1A receptors in the dorsal hippocampus of the rat brain: possible existence of galanin receptor subtypes , 1994, Brain Research.

[411]  B. Fredholm,et al.  Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. , 2000, Molecular pharmacology.

[412]  B. Fredholm,et al.  A2a/D2 receptor interactions are not observed in COS-7 cells transiently transfected with dopamine D2 and adenosine A2a receptor cDNA. , 1994, Biochemical pharmacology.

[413]  P. Jenner,et al.  Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson's disease. , 1997, Trends in pharmacological sciences.

[414]  R. Weinberg,et al.  The pathway to signal achievement , 1993, Nature.

[415]  J P Changeux,et al.  On the cooperativity of biological membranes. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[416]  S. Nakanishi,et al.  Activation of the extracellular signal‐regulated kinase 2 by metabotropic glutamate receptors , 1999, The European journal of neuroscience.

[417]  U. Ungerstedt,et al.  Postsynaptic dopamine/adenosine interaction: I. Adenosine analogues inhibit dopamine D2-mediated behaviour in short-term reserpinized mice. , 1991, European journal of pharmacology.

[418]  S. Schiffmann,et al.  Functional striatal hypodopaminergic activity in mice lacking adenosine A2A receptors , 2001, Journal of neurochemistry.

[419]  J. Mallol,et al.  Adenosine Deaminase and A1 Adenosine Receptors Internalize Together following Agonist-induced Receptor Desensitization* , 1998, The Journal of Biological Chemistry.

[420]  P. Greengard,et al.  D(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[421]  Marc Montminy,et al.  Transcriptional regulation by the phosphorylation-dependent factor CREB , 2001, Nature Reviews Molecular Cell Biology.

[422]  F. Ciruela,et al.  The Heat Shock Cognate Protein hsc73 Assembles with A1 Adenosine Receptors To Form Functional Modules in the Cell Membrane , 2000, Molecular and Cellular Biology.

[423]  K. Blumer,et al.  G-protein-coupled receptors function as oligomers in vivo , 2000, Current Biology.

[424]  R. Lefkowitz The superfamily of heptahelical receptors , 2000, Nature Cell Biology.

[425]  A. Charara,et al.  GABAB and group I metabotropic glutamate receptors in the striatopallidal complex in primates , 2000, Journal of anatomy.

[426]  G. Köhr,et al.  Role of heteromer formation in GABAB receptor function. , 1999, Science.

[427]  Alan Wise,et al.  Heterodimerization is required for the formation of a functional GABAB receptor , 1998, Nature.

[428]  R. Nicoll,et al.  GABA-mediated biphasic inhibitory responses in hippocampus , 1979, Nature.

[429]  A. Lajtha,et al.  Diversity of interacting receptors , 1995 .

[430]  H. Lother,et al.  AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration , 2000, Nature.

[431]  U. Ungerstedt,et al.  Evidence for a substrate of neuronal plasticity based on pre- and postsynaptic neurotensin-dopamine receptor interactions in the neostriatum. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[432]  Robert J. Lefkowitz,et al.  β-Adrenergic receptors: Evidence for negative cooperativity , 1975 .

[433]  U. Ungerstedt,et al.  On the mechanism by which methylxanthines enhance apomorphine-induced rotation behaviour in the rat , 1983, Pharmacology Biochemistry and Behavior.

[434]  A. Cochran Protein-protein interfaces: mimics and inhibitors. , 2001, Current opinion in chemical biology.

[435]  R. J. Boegman,et al.  Involvement of adenosine and glutamate receptors in the induction of c‐fos in the striatum by haloperidol , 1996, Synapse.

[436]  S. Nakanishi,et al.  Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor , 2000, Nature.

[437]  K. Deisseroth,et al.  Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway , 2001, Proceedings of the National Academy of Sciences of the United States of America.