Photocatalytic and antibacterial activity of Yttrium doped TiO2 nanostructure

[1]  J. Luo Preparation of Rare Earth Lu-doped TiO2 Film by Sol-gel Method and Its Photocatalytic Degradation of Methyl Orange Under Natural Light , 2022, Materials Science.

[2]  Yuanbing Mao,et al.  Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective , 2021, Nanotechnology.

[3]  A. Kaiba,et al.  Sol-gel synthesized rutile TiO2 nanoparticles loaded with cardamom essential oil: Enhanced antibacterial activity , 2021 .

[4]  张金锋,et al.  有机胺表面修饰的一维 CdSe0.8S0.2-DETA /二维SnNb2O6 S型异质结及其可见光光催化CO2还原性能的研究 , 2021 .

[5]  S. Jadkar,et al.  Synthesis and Characterization of Various Doped TiO2 Nanocrystals for Dye-Sensitized Solar Cells , 2021, ACS omega.

[6]  W. Macyk,et al.  TiO2 with Tunable Anatase-to-Rutile Nanoparticles Ratios: How Does the Photoactivity Depend on the Phase Composition and the Nature of Photocatalytic Reaction? , 2021 .

[7]  G. Dawson,et al.  Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution , 2021, Acta Physico Chimica Sinica.

[8]  Suwen Li,et al.  Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight , 2021 .

[9]  A. Fujishima,et al.  One-Pot Synthesis of Anatase, Rutile-Decorated Hydrogen Titanate Nanorods by Yttrium Doping for Solar H2 Production , 2020, ACS omega.

[10]  T. Goslinski,et al.  Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine , 2020, Nanomaterials.

[11]  Xiujian Zhao,et al.  Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles , 2019, Applied Surface Science.

[12]  Yuhong Zhang,et al.  Preparation of hollow yttrium-doped TiO2 microspheres with enhanced visible-light photocatalytic activity , 2019, Materials Research Express.

[13]  B. Rajesh Kumar,et al.  X-ray peak profile analysis of Sb2O3-doped ZnO nanocomposite semiconductor , 2018, Advances in Natural Sciences: Nanoscience and Nanotechnology.

[14]  V. Kumaravel,et al.  Phosphorus and Carbon Co-Doped TiO2 Nanotube Arrays for Excellent ROS Production , 2018 .

[15]  C. Liang,et al.  Efficient Visible-Light-Driven Splitting of Water into Hydrogen over Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets/Layered CdS–Diethylenetriamine Nanobelts , 2018, ACS Sustainable Chemistry & Engineering.

[16]  K. Maeda,et al.  Water Splitting on Rutile TiO2 -Based Photocatalysts. , 2018, Chemistry.

[17]  T. Huyền,et al.  Enhanced Photocatalytic Activity of {110}-Faceted TiO2 Rutile Nanorods in the Photodegradation of Hazardous Pharmaceuticals , 2018, Nanomaterials.

[18]  S. Subhapriya,et al.  Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. , 2018, Microbial pathogenesis.

[19]  M. Dramićanin,et al.  Rare Earth‐Doped Anatase TiO2 Nanoparticles , 2017 .

[20]  Kaihua Zhang,et al.  Synthesis, Characterization and Photocatalytic Performance of Lanthanides (Y, Ce) Doped TiO2 Nanosheets Films , 2017 .

[21]  Yong Han,et al.  Zn and Ag Co-doped Anti-microbial TiO2 Coatings on Ti by Micro-arc Oxidation , 2016 .

[22]  Jinsong Rao,et al.  Synthesis of Yttrium Doped TiO2 Nanotubes by a Microwave Refluxing Method and Their Photoluminescence Properties and Photocatalytic Properties , 2016 .

[23]  Hongbing Song,et al.  Yttrium doped TiO2 porous film photoanode for dye-sensitized solar cells with enhanced photovoltaic performance , 2016 .

[24]  P. Kajitvichyanukul,et al.  Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light , 2016, Environmental Science and Pollution Research.

[25]  Dandan Zhou,et al.  Visible‐light photocatalytic degradation of methyl orange over spherical activated carbon‐supported and Er3+:YAlO3‐doped TiO2 in a fluidized bed , 2015 .

[26]  V. Murugesan,et al.  Indium and cerium co-doped mesoporous TiO2 nanocomposites with enhanced visible light photocatalytic activity , 2015 .

[27]  F. Rojas,et al.  Yttrium deposition on mesoporous TiO2: textural design and UV decolourization of organic dyes , 2015, Bulletin of Materials Science.

[28]  M. B. Rabeh,et al.  Effect of thickness on structural and optical properties of vacuum‐deposited Sn2Sb2S5 thin films , 2015 .

[29]  Xingping Zhou,et al.  Synthesis and Properties of Carbon and Yttrium Co-Doped TiO2 Photocatalyst , 2014 .

[30]  P. Salvador,et al.  Comprehensive Kinetic and Mechanistic Analysis of TiO2 Photocatalytic Reactions According to the Direct–Indirect Model: (I) Theoretical Approach , 2014 .

[31]  Sandip V. Bhatt,et al.  Pressure and temperature dependence of Raman spectra and their anharmonic effects in Bi2Se3 single crystal , 2014 .

[32]  S. Sirivithayapakorn,et al.  Photocatalytic Reduction of Nitrate over Fe-modified TiO2 , 2014 .

[33]  A. Ferraria,et al.  Bi–Y doped and co-doped TiO2 nanoparticles: Characterization and photocatalytic activity under visible light irradiation , 2013 .

[34]  Zhong-liang Shi,et al.  Photocatalytic degradation of methylene blue by visible-light-driven yttrium-doped mesoporous titania coated magnetite photocatalyst , 2013 .

[35]  M. Singla,et al.  Study on reflectivity and photostability of Al-doped TiO2 nanoparticles and their reflectors , 2013 .

[36]  Sandip V. Bhatt,et al.  X-ray diffraction, X-ray photoelectron spectroscopy, and raman spectroscopy of undoped and Mn-doped ZnO nanoparticles prepared by microwave irradiation , 2013 .

[37]  M. Iliev,et al.  Raman and infrared spectra of brookite (TiO2): Experiment and theory , 2013 .

[38]  Jiangtian Li,et al.  PHOTOCATALYTIC GENERATION OF HYDROGEN WITH VISIBLE-LIGHT NITROGEN-DOPED LANTHANUM TITANIUM OXIDES , 2013 .

[39]  Yan Sun,et al.  Carbon doped TiO2 nanowire arrays with improved photoelectrochemical water splitting performance , 2012 .

[40]  B. Grzmil,et al.  Photostability and optical properties of modified titanium dioxide , 2012 .

[41]  H. Ahn,et al.  A change in morphology from anatase-TiO2 nanoparticles to anatase-TiO2 nanoflakes via electrospray , 2012 .

[42]  M. Mitrić,et al.  Multisite luminescence of rare earth doped TiO2 anatase nanoparticles , 2012 .

[43]  N. Hebalkar,et al.  Photocatalytic activity enhancement in doped titanium dioxide by crystal defects. , 2012, Dalton transactions.

[44]  Jun Wang,et al.  Detection of reactive oxygen species (ROS) generated by TiO2(R), TiO2(R/A) and TiO2(A) under ultrasonic and solar light irradiation and application in degradation of organic dyes. , 2011, Journal of hazardous materials.

[45]  Jianguo Zhou,et al.  Preparation, characterization of Y3+-doped TiO2 nanoparticles and their photocatalytic activities for methyl orange degradation , 2011 .

[46]  Karla S. Brammer,et al.  Enhanced Cell Growth, Function, and Differentiation by TiO2 Nanotube Surface Structuring , 2010 .

[47]  M. Brik,et al.  First-principles calculations of optical and electronic properties of pure and Sm3+-doped TiO2 , 2010 .

[48]  Fu-hui Wang,et al.  Yttrium-doped TiO2 films prepared by means of DC reactive magnetron sputtering , 2009 .

[49]  M. Fang,et al.  Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity , 2009, Nanotechnology.

[50]  N. Dimitrijević,et al.  Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO−TiO2 Nanocomposites , 2008 .

[51]  F. Zeng,et al.  Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering , 2007 .

[52]  U. Bakir,et al.  Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films , 2006 .

[53]  J. Nedeljković,et al.  Photoluminescence of anatase and rutile TiO2 particles. , 2006, The journal of physical chemistry. B.

[54]  N. Serpone,et al.  Visible light absorption by various titanium dioxide specimens. , 2006, The journal of physical chemistry. B.

[55]  S. Yin,et al.  Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution–reprecipitation process , 2004 .

[56]  Lefei Ding,et al.  Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics , 2001 .

[57]  J. Herrmann,et al.  Photocatalytic degradation pathway of methylene blue in water , 2001 .

[58]  D. Balzar X-Ray Diffraction Line Broadening: Modeling and Applications to High-Tc Superconductors , 2017, Journal of research of the National Institute of Standards and Technology.