Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces
暂无分享,去创建一个
Neelesh A. Patankar | Sigurdur T. Thoroddsen | Derek Y. C. Chan | Ivan U. Vakarelski | Jeremy O. Marston | N. Patankar | D. Chan | S. Thoroddsen | I. Vakarelski | J. Marston
[1] S. Ceccio. Friction Drag Reduction of External Flows with Bubble and Gas Injection , 2010 .
[2] Vijay K. Dhir,et al. SUBCOOLED FILM-BOILING HEAT TRANSFER FROM SPHERES , 1978 .
[3] E. Bormashenko. Comment on Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. , 2011, Langmuir : the ACS journal of surfaces and colloids.
[4] S. Nukiyama. The Maximum and Minimum Values of the Heat Q Transmitted from Metal to Boiling Water under Atmospheric Pressure , 1966 .
[5] V. Carey. Liquid-Vapor Phase-Change Phenomena , 2020 .
[6] Johann Gottlob Leidenfrost. On the fixation of water in diverse fire , 1966 .
[7] B. Alemán,et al. Self-propelled Leidenfrost droplets. , 2006, Physical review letters.
[8] John D. Bernardin,et al. The Leidenfrost point : Experimental study and assessment of existing models , 1999 .
[9] Neelesh A. Patankar,et al. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces , 2003 .
[10] Joanna Aizenberg,et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. , 2010, ACS nano.
[11] A. Cassie,et al. Wettability of porous surfaces , 1944 .
[12] M. Kohno,et al. BOILING FROM A SUPER-WATER-REPELLENT SURFACE , 2005 .
[13] S. Bell,et al. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. , 2007, Angewandte Chemie.
[14] Guangming Liu,et al. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. , 2011, Langmuir : the ACS journal of surfaces and colloids.
[15] Doris Vollmer,et al. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating , 2012, Science.
[16] V. Craig,et al. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature. , 2010, Faraday discussions.
[17] F. Celestini,et al. Effect of an electric field on a Leidenfrost droplet , 2012, 1203.4799.
[18] D. Quéré. Wetting and Roughness , 2008 .
[19] Neelesh A. Patankar,et al. Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer , 2010 .
[20] S. Nukiyama. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure , 1966 .
[21] V. Dhir,et al. Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Ve , 1993 .
[22] Chang-Jin Kim,et al. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. , 2011, Physical review letters.
[23] A. Majumdar,et al. Nanowires for enhanced boiling heat transfer. , 2009, Nano letters.
[24] J. M. Bush,et al. Underwater breathing: the mechanics of plastron respiration , 2008, Journal of Fluid Mechanics.
[25] Hyungdae Kim,et al. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena , 2011 .
[26] Christophe Clanet,et al. Leidenfrost on a ratchet , 2011 .
[27] Y. Zvirin,et al. BOILING ON FREE-FALLING SPHERES: DRAG AND HEAT TRANSFER COEFFICIENTS , 1990 .
[28] J. Lienhard,et al. On the existence of two ‘transition’ boiling curves , 1982 .
[29] D. Chan,et al. Drag reduction by Leidenfrost vapor layers. , 2011, Physical review letters.
[30] Sindy K. Y. Tang,et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.
[31] J. Rothstein. Slip on Superhydrophobic Surfaces , 2010 .
[32] Michael I. Newton,et al. Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties , 2010 .