The wind and the magnetospheric accretion onto the T Tauri star S Coronae Australis at sub-au resolution

To investigate the inner regions of protoplanetary disks, we performed near-infrared interferometric observations of the classical TTauri binary system S CrA. We present the first VLTI-GRAVITY high spectral resolution ($R\sim$4000) observations of a classical TTauri binary, S CrA (composed of S CrA N and S CrA S and separated by $\sim$1.4"), combining the four 8-m telescopes in dual-field mode. Our observations in the near-infrared K-band continuum reveal a disk around each binary component, with similar half-flux radii of about 0.1 au at d$\sim$130 pc, inclinations ($i=$28$\pm$3$^o$\ and $i=$22$\pm$6$^o$), and position angles (PA=0$^o\pm$6$^o$ and PA=-2$^o\pm$12$^o$), suggesting that they formed from the fragmentation of a common disk. The S CrA N spectrum shows bright HeI and Br$\gamma$ line emission exhibiting inverse P-Cygni profiles, typically associated with infalling gas. The continuum-compensated Br$\gamma$ line visibilities of S CrA N show the presence of a compact Br$\gamma$ emitting region the radius of which is about $\sim$0.06 au, which is twice as big as the truncation radius. This component is mostly tracing a wind. Moreover, a slight radius change between the blue- and red-shifted Br$\gamma$ line components is marginally detected. The presence of an inverse P-Cygni profile in the HeI and Br$\gamma$ lines, along with the tentative detection of a slightly larger size of the blue-shifted Br$\gamma$ line component, hint at the simultaneous presence of a wind and magnetospheric accretion in S CrA N.

Santiago | Heidelberg | Dublin Institute for Advanced Studies | Ireland | Bonn | Porto | Portugal | Berkeley | Lisboa | Garching | Leiden | Grenoble | Sorbonne Paris Cit'e | H Germany | France. | Usa | U. California | Cnrs | B. Lazareff | G. Perrin | C. Hummel | E. Observatory | P. Caselli | G. Rousset | T. Henning | W. Brandner | S. Lacour | Leiden University | J. Kolb | J. Woillez | H. Bonnet | S. Leiden | W. Thi | J. Berger | A. Eckart | E. Gendron | M. F. Astronomy | R. Genzel | U. Chile | Observatoire de Paris | J. Dexter | S. Hippler | F. Eisenhauer | T. Paumard | P. Kervella | J. Panduro | U. G. Alpes | Ipag | D. D. Astronom'ia | Chile. | K. Perraut | M. Benisty | A. M'erand | J. Bouquin | L. Labadie | S. Gillessen | T. Ott | The Netherlands. | U. Diderot | Centra | E. Dishoeck | E. Sturm | O. Pfuhl | C. Dougados | M. Kulas | M. Horrobin | E. Wieprecht | E. Wiezorrek | G. B. Munchen | Koln | I. Institut | Unidad Mixta Internacional Franco-Chilena de Astronom'ia | Lesia | V. C. D. Foresto | L. Jocou | A. Amorim | P. Garcia | X. Haubois | S. Scheithauer | C. Straubmeier | F. Vincent | I. Waisberg | S. Yazici | Z. Hubert | N. Anugu | A. Buron | Y. Cl'enet | C. Deen | F. Delplancke-Strobele | M. Haug | F. Haussmann | S. Kellner | P. L'ena | M. Lippa | E. Muller | C. Rau | R. Rohloff | J. Sanchez-Bermudez | M. Scholler | I. Wank | M. Wiest | W. D. Wit | C. G. Dabo | U. Koln | M. F. Physics | R. G. Lopez | G. Astronomy | A. C. O. Garatti | Instituto Superior Tecnico | Dublin. | A. Ramírez | I. Institut | P. university | D. Physics | T. P. R. R. Abuter | Universidade do Porto - Faculdade de Engenharia | L. Hall | J. L. Bouquin | T. Ott | A. Ramirez | Usa | I. Técnico

[1]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[2]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[3]  Zhi-Yun Li,et al.  A triple protostar system formed via fragmentation of a gravitationally unstable disk , 2016, Nature.

[4]  G. Weigelt,et al.  Brackett γ radiation from the inner gaseous accretion disk, magnetosphere, and disk wind region of Herbig AeBe stars , 2016 .

[5]  L. Testi,et al.  Probing the wind-launching regions of the Herbig Be star HD 58647 with high spectral resolution interferometry , 2016, 1601.02209.

[6]  G. Weigelt,et al.  Investigating the origin and spectroscopic variability of the near-infrared H I lines in the Herbig star VV Ser , 2015, 1511.03181.

[7]  W. J. de Wit,et al.  High-resolution Br γ spectro-interferometry of the transitional Herbig Ae/Be star HD 100546: a Keplerian gaseous disc inside the inner rim , 2015, 1509.05411.

[8]  Laboratoire Lagrange,et al.  AMBER/VLTI high spectral resolution observations of the Brγ emitting region in HD 98922 - A compact disc wind launched from the inner disc region , 2015, 1508.00798.

[9]  Gerd Weigelt,et al.  Probing the accretion-ejection connection with VLTI/AMBER. High spectral resolution observations of the Herbig Ae star HD 163296 , 2015, 1502.03027.

[10]  B. Lazareff,et al.  The VLTI/PIONIER near-infrared interferometric survey of southern T Tauri stars - I. First results , 2014, 1412.1052.

[11]  H. C. Stempels,et al.  Doppler Probe of Accretion onto a T Tauri star , 2014, 1408.1846.

[12]  R. Akeson,et al.  Misaligned protoplanetary disks in a young binary star system , 2014, Nature.

[13]  L. Hillenbrand,et al.  Constraining the sub-au-scale distribution of hydrogen and carbon monoxide gas around young stars with the Keck Interferometer , 2014, 1406.6402.

[14]  Origin of the wide-angle hot H2 in DG Tauri: New insight from SINFONI spectro-imaging , 2014, 1402.1160.

[15]  H. Winckel,et al.  Relating jet structure to photometric variability: the Herbig Ae star HD 163296 , 2014, 1401.3744.

[16]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[17]  John D. Monnier,et al.  RESOLVING THE GAP AND AU-SCALE ASYMMETRIES IN THE PRE-TRANSITIONAL DISK OF V1247 ORIONIS , 2013, 1304.2768.

[18]  R. Kurosawa,et al.  Spectral variability of classical T Tauri stars accreting in an unstable regime , 2013, 1301.0641.

[19]  P. Andre',et al.  Protostars, multiplicity, and disk evolution in the Corona Australis region: a Herschel Gould Belt Study , 2012, 1211.6945.

[20]  G. Weigelt,et al.  Revealing the inner circumstellar disk of the T Tauri star S Coronae Australis N using the VLTI , 2012, 1207.2467.

[21]  J. Borissova,et al.  H2 flows in the Corona Australis cloud and their driving sources , 2011, 1108.3799.

[22]  N. Evans,et al.  THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. III. A MULTI-WAVELENGTH VIEW OF CORONA AUSTRALIS , 2011, 1104.1669.

[23]  Geoffrey A. Blake,et al.  THE STRUCTURE AND DYNAMICS OF MOLECULAR GAS IN PLANET-FORMING ZONES: A CRIRES SPECTRO-ASTROMETRIC SURVEY , 2011, 1103.3000.

[24]  Vianak Naranjo,et al.  GRAVITY: observing the universe in motion , 2011 .

[25]  Tim J. Harries,et al.  Multidimensional models of hydrogen and helium emission line profiles for classical T Tauri stars: method, tests and examples , 2011, 1102.0828.

[26]  D. Schertl,et al.  VLTI/AMBER spectro-interferometry of the Herbig Be star MWC 297 with spectral resolution 12 000 , 2011, 1101.3695.

[27]  R. Millan-Gabet,et al.  SPATIALLY AND SPECTRALLY RESOLVED HYDROGEN GAS WITHIN 0.1 AU OF T TAURI AND HERBIG Ae/Be STARS , 2010, 1006.1651.

[28]  G. Weigelt,et al.  Strong near-infrared emission in the sub-AU disk of the Herbig Ae star HD 163296: evidence of refractory dust? , 2009, 0911.4363.

[29]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[30]  Jena,et al.  Handbook of Star Forming Regions Vol. II Astronomical Society of the Pacific, 2008 , 2022 .

[31]  H. McAlister,et al.  A Tale of Two Herbig Ae Stars, MWC 275 and AB Aurigae: Comprehensive Models for Spectral Energy Distribution and Interferometry , 2008, 0808.1728.

[32]  D. Schertl,et al.  The origin of hydrogen line emission for five Herbig Ae/Be stars spatially resolved by VLTI/AMBER spectro-interferometry , 2008, 0807.1119.

[33]  Romain G. Petrov,et al.  Near-infrared interferometry of eta Carinae with spectral resolutions of 1 500 and 12 000 using AMBER/VLTI , 2007 .

[34]  T. Henning,et al.  Optical spectroscopy of close companions to nearby Herbig Ae/Be and T Tauri stars , 2007, astro-ph/0701208.

[35]  R. L. Akeson,et al.  Spectrally Dispersed K-Band Interferometric Observations of Herbig Ae/Be Sources: Inner Disk Temperature Profiles , 2006, astro-ph/0611447.

[36]  E. Tatulli,et al.  Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration. , 2006, astro-ph/0603046.

[37]  L. Hillenbrand,et al.  Probing T Tauri Accretion and Outflow with 1 Micron Spectroscopy , 2006, astro-ph/0604006.

[38]  D. Apai,et al.  Optical Outflows in the R Coronae Australis Molecular Cloud , 2004 .

[39]  R. Fisher A Turbulent Interstellar Medium Origin of the Binary Period Distribution , 2003, astro-ph/0303280.

[40]  T. Greene,et al.  Astrophysics of Young Star Binaries , 2002, astro-ph/0211376.

[41]  The formation of close binary systems , 1994, astro-ph/9411081.

[42]  E. Young,et al.  IRAS observations of young stellar objects in the Corona Australis dark cloud , 1992 .

[43]  Fred C. Adams,et al.  Eccentric gravitational instabilities in nearly Keplerian disks , 1989 .

[44]  M. Walker STUDIES OF EXTREMELY YOUNG CLUSTERS. VI. SPECTROSCOPIC OBSERVATIONS OF THE ULTRAVIOLET-EXCESS STARS IN THE ORION NEBULA CLUSTER AND NGC 2264. , 1972 .