Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane.

[1]  H. Scheidt,et al.  The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head defects in rats , 2013, Magnetic resonance in medicine.

[2]  R. González-Ramírez,et al.  Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential. , 2013, Stem cells and development.

[3]  Joseph H. Gorman,et al.  Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies , 2013, Science Translational Medicine.

[4]  Norma Rivera,et al.  Blackwater fever like in murine malaria , 2013, Parasitology Research.

[5]  J. Milan,et al.  Computational model combined with in vitro experiments to analyse mechanotransduction during mesenchymal stem cell adhesion. , 2013, European cells & materials.

[6]  Zhongdang Xiao,et al.  Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. , 2013, ACS applied materials & interfaces.

[7]  Xiang Li,et al.  Influence of Architecture of β-Tricalcium Phosphate Scaffolds on Biological Performance in Repairing Segmental Bone Defects , 2012, PloS one.

[8]  Matthew J. Dalby,et al.  The role of microtopography in cellular mechanotransduction. , 2012, Biomaterials.

[9]  A. Polini,et al.  Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors , 2011, PloS one.

[10]  G. Zimmermann,et al.  Allograft bone matrix versus synthetic bone graft substitutes. , 2011, Injury.

[11]  C. Yi,et al.  Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. , 2010, ACS nano.

[12]  C. Seebach,et al.  Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. , 2010, Injury.

[13]  L. Fassina,et al.  Low-Power Ultrasounds as a Tool to Culture Human Osteoblasts inside Cancellous Hydroxyapatite , 2010, Bioinorganic chemistry and applications.

[14]  L. Shaw,et al.  Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. , 2009, Biomaterials.

[15]  B. Al-Nawas,et al.  In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives , 2009, Head & face medicine.

[16]  J. Castillo,et al.  Tratamiento de pérdidas óseas, pseudoartrosis, artrodesis y tumores óseos benignos con un xenoimplante mexicano (estudio clínico) , 2009 .

[17]  Michael D. Ball,et al.  The effect of different surface morphology and roughness on osteoblast-like cells. , 2008, Journal of biomedical materials research. Part A.

[18]  M. S. Park,et al.  Enhancement of in vivo bone regeneration efficacy of human mesenchymal stem cells. , 2008, Journal of Microbiology and Biotechnology.

[19]  K. Pietrucha Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies. , 2005, International journal of biological macromolecules.

[20]  C. Cornell,et al.  Osteoconductive materials and their role as substitutes for autogenous bone grafts. , 1999, The Orthopedic clinics of North America.

[21]  M. A. Araiza,et al.  Scaffolds of Collagen from Nukbone , 2012 .

[22]  Bangshang Zhu,et al.  Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. , 2012, Journal of nanoscience and nanotechnology.

[23]  S. M. Ancheita,et al.  Desviación oblicua. Diagnóstico estrabológico y alternativas de tratamiento , 2009 .