Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane.
暂无分享,去创建一个
A. Zepeda-Rodríguez | M. Piña-Barba | N. Rodríguez-Fuentes | L. Fuentes-Mera | J. Ambrosio | L. E. Alcántara-Quintana | A. Rodríguez-Hernández | Juana Enríquez-Jiménez | Lizeth Fuentes-Mera | L. E. Alcántara-Quintana
[1] H. Scheidt,et al. The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head defects in rats , 2013, Magnetic resonance in medicine.
[2] R. González-Ramírez,et al. Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential. , 2013, Stem cells and development.
[3] Joseph H. Gorman,et al. Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies , 2013, Science Translational Medicine.
[4] Norma Rivera,et al. Blackwater fever like in murine malaria , 2013, Parasitology Research.
[5] J. Milan,et al. Computational model combined with in vitro experiments to analyse mechanotransduction during mesenchymal stem cell adhesion. , 2013, European cells & materials.
[6] Zhongdang Xiao,et al. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. , 2013, ACS applied materials & interfaces.
[7] Xiang Li,et al. Influence of Architecture of β-Tricalcium Phosphate Scaffolds on Biological Performance in Repairing Segmental Bone Defects , 2012, PloS one.
[8] Matthew J. Dalby,et al. The role of microtopography in cellular mechanotransduction. , 2012, Biomaterials.
[9] A. Polini,et al. Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors , 2011, PloS one.
[10] G. Zimmermann,et al. Allograft bone matrix versus synthetic bone graft substitutes. , 2011, Injury.
[11] C. Yi,et al. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. , 2010, ACS nano.
[12] C. Seebach,et al. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. , 2010, Injury.
[13] L. Fassina,et al. Low-Power Ultrasounds as a Tool to Culture Human Osteoblasts inside Cancellous Hydroxyapatite , 2010, Bioinorganic chemistry and applications.
[14] L. Shaw,et al. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. , 2009, Biomaterials.
[15] B. Al-Nawas,et al. In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives , 2009, Head & face medicine.
[16] J. Castillo,et al. Tratamiento de pérdidas óseas, pseudoartrosis, artrodesis y tumores óseos benignos con un xenoimplante mexicano (estudio clínico) , 2009 .
[17] Michael D. Ball,et al. The effect of different surface morphology and roughness on osteoblast-like cells. , 2008, Journal of biomedical materials research. Part A.
[18] M. S. Park,et al. Enhancement of in vivo bone regeneration efficacy of human mesenchymal stem cells. , 2008, Journal of Microbiology and Biotechnology.
[19] K. Pietrucha. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies. , 2005, International journal of biological macromolecules.
[20] C. Cornell,et al. Osteoconductive materials and their role as substitutes for autogenous bone grafts. , 1999, The Orthopedic clinics of North America.
[21] M. A. Araiza,et al. Scaffolds of Collagen from Nukbone , 2012 .
[22] Bangshang Zhu,et al. Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. , 2012, Journal of nanoscience and nanotechnology.
[23] S. M. Ancheita,et al. Desviación oblicua. Diagnóstico estrabológico y alternativas de tratamiento , 2009 .