Structural sparseness and complex networks

The field of complex networks has seen a steady growth in the last decade, fuelled by an ever-growing collection of relational data that our life in the information age generates. While several structural commonalities of complex networks have been observed—e.g. low density, heavily skewed degree-distributions, or the small world property—so far no property has been discovered that is algorithmically exploitable on a broad scale. Concurrently, the theory of structurally sparse graphs has been revolutionised by Robertson and Seymour’s graph minors programme. Many tools and techniques, developed as ‘by-products’ in the programme, have had a tremendous impact on the research of parametrised and approximation algorithms. They in particular enabled the development of several algorithmic meta-theorems, that is, algorithms that work for a large spectrum of problems on sparse inputs. In this thesis, we work towards bringing the field of structural sparse graphs and the field of complex networks closer together. We identify two notions of structural sparseness based on the density of shallow minors as keys for this endeavour: classes of bounded expansion and nowhere dense classes as introduced by Nešetřil and Ossona de Mendez in their seminal work on a robust theory of sparseness. In the following, we demonstrate that these sparse classes admit efficient algorithms for a huge number of problems, some of which have applications in domain-specific areas of network science. We further prove that several fundamental network models exhibit these properties and demonstrate empirically that this also holds true for a selection of realworld networks from various domains. As a result, we can state that the theory of structurally sparse graphs is applicable to complex networks and, as a corollary, so is the rich algorithmic toolkit it provides. This connection offers researchers from both the field of algorithmic graph theory and network science new approaches, insights, and productive questions.

[1]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[2]  Massimo Franceschetti,et al.  Navigation in small-world networks: a scale-free continuum model , 2006, Journal of Applied Probability.

[3]  Marcus Kaiser,et al.  Strategies for Network Motifs Discovery , 2009, 2009 Fifth IEEE International Conference on e-Science.

[4]  Stephan Kreutzer,et al.  Kernelization and Sparseness: the case of Dominating Set , 2014, STACS.

[5]  H. Gaifman On Local and Non-Local Properties , 1982 .

[6]  Dimitrios M. Thilikos,et al.  Explicit Linear Kernels via Dynamic Programming , 2013, SIAM J. Discret. Math..

[7]  Dimitrios M. Thilikos,et al.  Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs , 2012, STACS.

[8]  Xiao Liu,et al.  Probabilistic Graphlet Transfer for Photo Cropping , 2013, IEEE Transactions on Image Processing.

[9]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[10]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[11]  Dániel Marx,et al.  Structure theorem and isomorphism test for graphs with excluded topological subgraphs , 2011, STOC '12.

[12]  A Masoudi-Nejad,et al.  Building blocks of biological networks: a review on major network motif discovery algorithms. , 2012, IET systems biology.

[13]  Yan Shi,et al.  On positive influence dominating sets in social networks , 2011, Theor. Comput. Sci..

[14]  Fedor V. Fomin,et al.  Solving d-SAT via Backdoors to Small Treewidth , 2015, SODA.

[15]  Robert Ganian,et al.  When Trees Grow Low: Shrubs and Fast MSO1 , 2012, International Symposium on Mathematical Foundations of Computer Science.

[16]  Natasa Przulj,et al.  Graphlet-based measures are suitable for biological network comparison , 2013, Bioinform..

[17]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[18]  Paul D. Seymour,et al.  Tree-width and planar minors , 2015, J. Comb. Theory, Ser. B.

[19]  F. Ball,et al.  Epidemics on random intersection graphs , 2010, 1011.4242.

[20]  Blair D. Sullivan,et al.  Hyperbolicity, degeneracy, and expansion of random intersection graphs , 2014, WAW.

[21]  L. Freeman Finding Social Groups: A Meta-Analysis of the Southern Women Data , 2003 .

[22]  Stephan Kreutzer,et al.  Deciding first-order properties of nowhere dense graphs , 2013, STOC.

[23]  Zdenek Dvorak,et al.  Constant-factor approximation of domination number in sparse graphs , 2011, ArXiv.

[24]  F. Harary,et al.  Eccentricity and centrality in networks , 1995 .

[25]  Thomas Seidl,et al.  Hierarchical Clustering for Real-Time Stream Data with Noise , 2011, SSDBM.

[26]  Vasaka Visoottiviseth,et al.  Lightweight Detection of DoS Attacks , 2007, 2007 15th IEEE International Conference on Networks.

[27]  Ian T. Foster,et al.  Mapping the Gnutella Network , 2002, IEEE Internet Comput..

[28]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[29]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[31]  Anuj Dawar,et al.  Homomorphism Preservation on Quasi-Wide Classes , 2008, J. Comput. Syst. Sci..

[32]  A. Ganesh,et al.  Efficient routeing in Poisson small-world networks , 2006, Journal of Applied Probability.

[33]  Erik Jan van Leeuwen,et al.  Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs , 2013, STACS.

[34]  Ioannis Stavrakakis,et al.  On the Local Approximations of Node Centrality in Internet Router-Level Topologies , 2013, IWSOS.

[35]  Jaroslav Nesetril,et al.  First order properties on nowhere dense structures , 2010, The Journal of Symbolic Logic.

[36]  Michael R. Fellows,et al.  Well Quasi Orders in Subclasses of Bounded Treewidth Graphs and Their Algorithmic Applications , 2012, Algorithmica.

[37]  Michael Brinkmeier,et al.  Network Statistics , 2004, Network Analysis.

[38]  Douglas R. Stinson,et al.  On the complexity of the herding attack and some related attacks on hash functions , 2012, Des. Codes Cryptogr..

[39]  Blair D. Sullivan,et al.  Zig-Zag Numberlink is NP-Complete , 2014, J. Inf. Process..

[40]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[41]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[42]  Robert Ganian,et al.  Meta-Kernelization using Well-Structured Modulators , 2015, IPEC.

[43]  Stephen Chadwick,et al.  The Deep South , 2012 .

[44]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[45]  Rodney G. Downey,et al.  Parameterized complexity for the skeptic , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[46]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[47]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[48]  Stephan Kreutzer,et al.  Characterisations of Nowhere Dense Graphs (Invited Talk) , 2013, FSTTCS.

[49]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[50]  C. Jordan Sur les assemblages de lignes. , 1869 .

[51]  Michael R. Fellows,et al.  Local Search: Is Brute-Force Avoidable? , 2009, IJCAI.

[52]  Phokion G. Kolaitis,et al.  On preservation under homomorphisms and unions of conjunctive queries , 2004, PODS '04.

[53]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[54]  Cyril Gavoille,et al.  Tree-decompositions with bags of small diameter , 2007, Discret. Math..

[55]  Alexander Schrijver,et al.  On the history of the transportation and maximum flow problems , 2002, Math. Program..

[56]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[57]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[58]  James S. Thorp,et al.  Computer Relaying for Power Systems , 2009 .

[59]  Fedor V. Fomin,et al.  Bidimensionality and EPTAS , 2010, SODA '11.

[60]  Fernando M. A. Silva,et al.  G-Tries: a data structure for storing and finding subgraphs , 2014, Data Mining and Knowledge Discovery.

[61]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[62]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[63]  Jakub Gajarský,et al.  Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.

[64]  Paul D. Seymour,et al.  Graph minors XXIII. Nash-Williams' immersion conjecture , 2010, J. Comb. Theory, Ser. B.

[65]  Guoli Ding,et al.  Excluding a Long Double Path Minor , 1996, J. Comb. Theory, Ser. B.

[66]  Jaroslav Nesetril,et al.  Characterisations and examples of graph classes with bounded expansion , 2009, Eur. J. Comb..

[67]  Jakub Gajarský,et al.  Parameterized Algorithms for Modular-Width , 2013, IPEC.

[68]  D. Lusseau,et al.  The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations , 2003, Behavioral Ecology and Sociobiology.

[69]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[70]  Erik D. Demaine,et al.  Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..

[71]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[72]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[73]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .

[74]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[75]  Stephan Kreutzer,et al.  Lower Bounds for the Complexity of Monadic Second-Order Logic , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[76]  Daniela Kühn,et al.  The order of the largest complete minor in a random graph , 2007, Random Struct. Algorithms.

[77]  Pierre Fraigniaud,et al.  Greedy Routing in Tree-Decomposed Graphs , 2005, ESA.

[78]  Stefan Richter,et al.  Centrality Indices , 2004, Network Analysis.

[79]  T. E. Harris,et al.  Fundamentals of a Method for Evaluating Rail Net Capacities , 1955 .

[80]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[81]  Tamara G. Kolda,et al.  The Similarity Between Stochastic Kronecker and Chung-Lu Graph Models , 2011, SDM.

[82]  Ajay Mehra The Development of Social Network Analysis: A Study in the Sociology of Science , 2005 .

[83]  Christophe Paul,et al.  Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions , 2012, ICALP.

[84]  Donald E. Knuth,et al.  The Stanford GraphBase - a platform for combinatorial computing , 1993 .

[85]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[86]  Geevarghese Philip,et al.  Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond , 2012, TALG.

[87]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[88]  Hisao Tamaki,et al.  Constant-factor approximations of branch-decomposition and largest grid minor of planar graphs in O(n1+ϵ) time , 2011, Theor. Comput. Sci..

[89]  Jakub Gajarský,et al.  Finite Integer Index of Pathwidth and Treewidth , 2014, IPEC.

[90]  Leland L. Beck,et al.  Smallest-last ordering and clustering and graph coloring algorithms , 1983, JACM.

[91]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[92]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[93]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[94]  Norishige Chiba,et al.  Applications of the Lipton and Tarjan's Planar Separator Theorem , 1981 .

[95]  Siamak Tazari,et al.  Faster approximation schemes and parameterized algorithms on (odd-)H-minor-free graphs , 2012, Theor. Comput. Sci..

[96]  Alexander Langer,et al.  Practical algorithms for MSO model-checking on tree-decomposable graphs , 2014, Comput. Sci. Rev..

[97]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[98]  Alexander Langer,et al.  Evaluation of an MSO-Solver , 2012, ALENEX.

[99]  Tijana Milenkoviæ,et al.  Uncovering Biological Network Function via Graphlet Degree Signatures , 2008, Cancer informatics.

[100]  Somnath Sikdar,et al.  Fast Biclustering by Dual Parameterization , 2015, IPEC.

[101]  David Gamarnik,et al.  The diameter of a long range percolation graph , 2002, SODA '02.

[102]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[103]  Erik Jan van Leeuwen,et al.  Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[104]  J. Anthonisse The rush in a directed graph , 1971 .

[105]  Hal A. Kierstead,et al.  Orderings on Graphs and Game Coloring Number , 2003, Order.

[106]  Réka Albert,et al.  Conserved network motifs allow protein-protein interaction prediction , 2004, Bioinform..

[107]  John Skvoretz,et al.  Node centrality in weighted networks: Generalizing degree and shortest paths , 2010, Soc. Networks.

[108]  Robert Ganian,et al.  Meta-kernelization with structural parameters , 2013, J. Comput. Syst. Sci..

[109]  Rolf Niedermeier,et al.  Linear Problem Kernels for NP-Hard Problems on Planar Graphs , 2007, ICALP.

[110]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2001, J. Algorithms.

[112]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[113]  Ken-ichi Kawarabayashi,et al.  Linear min-max relation between the treewidth of H-minor-free graphs and its largest grid , 2012, STACS.

[114]  Martin J. B. Appel,et al.  The Maximum Vertex Degree of a Graph on Uniform Points in [0, 1] d , 1997, Advances in Applied Probability.

[115]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[116]  Frank Ball,et al.  Threshold behaviour and final outcome of an epidemic on a random network with household structure , 2008, Advances in Applied Probability.

[117]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[118]  Edward R. Scheinerman,et al.  On Random Intersection Graphs: The Subgraph Problem , 1999, Combinatorics, Probability and Computing.

[119]  M. Vatshelle New Width Parameters of Graphs , 2012 .

[120]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[121]  Andrew Thomason,et al.  An upper bound for some ramsey numbers , 1988, J. Graph Theory.

[122]  Detlef Seese,et al.  Linear time computable problems and first-order descriptions , 1996, Mathematical Structures in Computer Science.

[123]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[124]  B. Jansen The Power of Data Reduction : Kernels for Fundamental Graph Problems , 2013 .

[125]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion II. Algorithmic aspects , 2008, Eur. J. Comb..

[126]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[127]  Béla Bollobás,et al.  Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..

[128]  N. Lin Foundations of social research , 1976 .

[129]  Linyuan Lu,et al.  The Small World Phenomenon in Hybrid Power Law Graphs , 2004 .

[130]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[131]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[132]  Yiming Yang,et al.  Introducing the Enron Corpus , 2004, CEAS.

[133]  Ciro Cattuto,et al.  High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School , 2011, PloS one.

[134]  Stephen P. Borgatti,et al.  Identifying sets of key players in a social network , 2006, Comput. Math. Organ. Theory.

[135]  Hisao Tamaki,et al.  Optimal Branch-Decomposition of Planar Graphs in O(n3) Time , 2005, ICALP.

[136]  Noga Alon,et al.  Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs , 2007, Algorithmica.

[137]  Christos Faloutsos,et al.  R-MAT: A Recursive Model for Graph Mining , 2004, SDM.

[138]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[139]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[140]  Luc Segoufin,et al.  First-order queries on classes of structures with bounded expansion , 2018, Log. Methods Comput. Sci..

[141]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[142]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[143]  Dietmar Plenz,et al.  powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions , 2013, PloS one.

[144]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[145]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[146]  Jan Arne Telle,et al.  Boolean-width of graphs , 2009, Theor. Comput. Sci..

[147]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[148]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[149]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[150]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[151]  Tamara G. Kolda,et al.  An in-depth analysis of stochastic Kronecker graphs , 2011, JACM.

[152]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .

[153]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[154]  Bart M. P. Jansen,et al.  Turing kernelization for finding long paths and cycles in restricted graph classes , 2014, J. Comput. Syst. Sci..

[155]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..

[156]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[157]  T. Milenković,et al.  Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data , 2010, Journal of The Royal Society Interface.

[158]  Martin Grohe,et al.  Deciding first-order properties of locally tree-decomposable structures , 2000, JACM.

[159]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[160]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[161]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.

[162]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[163]  Dimitrios M. Thilikos,et al.  Linear kernels for (connected) dominating set on H-minor-free graphs , 2012, SODA.

[164]  Dimitrios M. Thilikos,et al.  Rank-width and tree-width of H-minor-free graphs , 2009, Eur. J. Comb..

[165]  Fan Chung Graham,et al.  Modeling the Small-World Phenomenon with Local Network Flow , 2005, Internet Math..

[166]  Martin Grohe Local Tree-Width, Excluded Minors, and Approximation Algorithms , 2003, Comb..

[167]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[168]  R. Halin S-functions for graphs , 1976 .

[169]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[170]  Andreas N. Lagerås,et al.  Epidemics on Random Graphs with Tunable Clustering , 2007, Journal of Applied Probability.

[171]  Tao Jiang,et al.  Compact topological minors in graphs , 2011, J. Graph Theory.

[172]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[173]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[174]  M. Biskup On the scaling of the chemical distance in long-range percolation models , 2003, math/0304418.

[175]  Bruce A. Reed,et al.  Excluding any graph as a minor allows a low tree-width 2-coloring , 2004, J. Comb. Theory, Ser. B.

[176]  Yuchung J. Wang,et al.  Stochastic Blockmodels for Directed Graphs , 1987 .

[177]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[178]  O. Kuchaiev,et al.  Topological network alignment uncovers biological function and phylogeny , 2008, Journal of The Royal Society Interface.

[179]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[180]  Stefan Kratsch,et al.  A Structural Approach to Kernels for ILPs: Treewidth and Total Unimodularity , 2015, ESA.

[181]  Laurent Viennot,et al.  A Synthesis on Partition Refinement: A Useful Routine for Strings, Graphs, Boolean Matrices and Automata , 1998, STACS.

[182]  Saket Saurabh,et al.  Uniform Kernelization Complexity of Hitting Forbidden Minors , 2015, ICALP.

[183]  Sebastian Wernicke,et al.  Efficient Detection of Network Motifs , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[184]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[185]  David Eppstein,et al.  Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time , 2010, Exact Complexity of NP-hard Problems.

[186]  Emmanuel Müller,et al.  Air-Indexing on Error Prone Communication Channels , 2010, DASFAA.

[187]  Svante Janson The probability that a random multigraph is simple. II , 2014, J. Appl. Probab..

[188]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[189]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[190]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[191]  Xuding Zhu,et al.  Colouring graphs with bounded generalized colouring number , 2009, Discret. Math..

[192]  Alexander Langer Schnelle Algorithmen für zerlegbare Graphen , 2013, Ausgezeichnete Informatikdissertationen.

[193]  Z. Dvořák,et al.  Asymptotical Structure of Combinatorial Objects , 2007 .

[194]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[195]  Petr A. Golovach,et al.  Parameterized Complexity for Domination Problems on Degenerate Graphs , 2008, WG.

[196]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[197]  Robin Thomas,et al.  Deciding First-Order Properties for Sparse Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[198]  J. Doyle,et al.  Some protein interaction data do not exhibit power law statistics , 2005, FEBS letters.

[199]  Peter V. Marsden,et al.  Egocentric and sociocentric measures of network centrality , 2002, Soc. Networks.

[200]  Zdenek Ryjácek,et al.  Claw-free graphs - A survey , 1997, Discret. Math..

[201]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[202]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[203]  Fabio Pianesi,et al.  Ego-centric Graphlets for Personality and Affective States Recognition , 2013, 2013 International Conference on Social Computing.

[204]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[205]  Dimitrios M. Thilikos,et al.  Subexponential parameterized algorithms , 2008, Comput. Sci. Rev..

[206]  Jörg Flum,et al.  Fixed-Parameter Tractability, Definability, and Model-Checking , 1999, SIAM J. Comput..

[207]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[208]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[209]  Peter Rossmanith,et al.  A Faster Parameterized Algorithm for Treedepth , 2014, ICALP.

[210]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[211]  Ken-ichi Kawarabayashi,et al.  Decomposition, approximation, and coloring of odd-minor-free graphs , 2010, SODA '10.

[212]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[213]  Stephan Kreutzer,et al.  Locally Excluding a Minor , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[214]  Walter Willinger,et al.  Mathematics and the Internet: A Source of Enormous Confusion and Great Potential , 2009, The Best Writing on Mathematics 2010.

[215]  Paul D. Seymour,et al.  The structure of claw-free graphs , 2005, BCC.

[216]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[217]  JANOS KOMLOS,et al.  Topological cliques in graphs II , 1994, Combinatorics, Probability and Computing.

[218]  Michal Pilipczuk,et al.  Kernelization Hardness of Connectivity Problems in d-Degenerate Graphs , 2010, WG.

[219]  W. Mader Homomorphieeigenschaften und mittlere Kantendichte von Graphen , 1967 .

[220]  Kurt Mehlhorn,et al.  Efficient graphlet kernels for large graph comparison , 2009, AISTATS.

[221]  Jon M. Kleinberg,et al.  Subgraph frequencies: mapping the empirical and extremal geography of large graph collections , 2013, WWW.

[222]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[223]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[224]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[225]  Stephan Kreutzer,et al.  Approximation Schemes for First-Order Definable Optimisation Problems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[226]  Daniel Král,et al.  Algorithms for Classes of Graphs with Bounded Expansion , 2009, WG.

[227]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[228]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[229]  Uri Alon,et al.  Coarse-graining and self-dissimilarity of complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.