Influence of Anomalous Changes in the Crystal Structure on the Transport Properties of YbNi1−xCuxAl Series of Alloys

Results of the transport properties of the YbNi1−xCuxAl (x = 0, 0.2, 0.5, 0.8 and 1.0) series of alloys are reported. The previous analysis of X-ray diffraction patterns indicates that all compounds crystallize in the hexagonal ZrNiAl structure with a linear behavior of the unit cell volume as a function of the Cu concentration (x). This is not found in the unit cell parameters, showing a discontinuity between x = 0.5 and 0.8. Such discontinuities affect the behavior of the electrical resistivity, in which the position of the minimum temperature changes from 95 K to 175 K, and a rise in the low temperature slope in the magnetic contribution (with -lnT dependence) from 21 μΩcm to 212 μΩcm is observed. In addition, the electronic coefficient of the specific heat increases almost twofold from 125 mJ/mol·K2 (x = 0.5) to 246 mJ/mol·K2 (x = 0.8). These changes are attributed to the variation of the distance between Yb and transition metals (Ni and Cu) along the series and the different electronic properties of the transition metals (Ni and Cu).

[1]  Takashi U. Ito,et al.  High-temperature antiferromagnetism in Yb based heavy fermion systems proximate to a Kondo insulator , 2018, Physical Review Research.

[2]  T. Takabatake,et al.  Uniaxial-Pressure-Induced Release of Magnetic Frustration in a Triangular Lattice Antiferromagnet YbCuGe , 2020, Metals.

[3]  S. Paschen,et al.  Quantum phases driven by strong correlations , 2020, Nature Reviews Physics.

[4]  W. Bi,et al.  Pressure-Induced Superconductivity in Elemental Ytterbium Metal. , 2018, Physical review letters.

[5]  L. F. Barquín,et al.  Kondo temperature and Heavy Fermion behavior in Yb1−xYxCuAl series of alloys , 2017 .

[6]  K. Suresh,et al.  Review on magnetic and related properties of RTX compounds , 2014, 1408.3238.

[7]  L. F. Barquín,et al.  YbNi2: A heavy fermion ferromagnet , 2012 .

[8]  E. Šantavá,et al.  Transition from Mixed-Valence to Trivalent Cerium State in Ce(Ni,Cu)Al Series , 2010 .

[9]  L. F. Barquín,et al.  Reduction of the Yb valence in YbAl3 nanoparticles , 2008 .

[10]  H. Löhneysen,et al.  Low-temperature properties of YbAl2 , 2005 .

[11]  A. Amato,et al.  Nonmagnetic?magnetic transition in Yb(Cu1?xNix)2Si2 studied by muon-spin relaxation , 2003 .

[12]  A. Medina,et al.  Transport and thermodynamic properties of YbInNi4-xCux system , 2001 .

[13]  A. N. Medina,et al.  ESR of Gd3+ in Y1−x−yYbxGdyInNi4 , 2001 .

[14]  L. P. Cardoso,et al.  Unusual behavior of the Kondo temperature ofLa1−xYbxCu3Al2 , 2001 .

[15]  D. Johrendt,et al.  Chapter 207 Structure-property relations of ternary equiatomic YbTX intermetallics , 2001 .

[16]  L. P. Cardoso,et al.  Change of the Kondo regime in CePd 2 Al 3 induced by chemical substitution: Verification of the Doniach diagram , 1999 .

[17]  H. Wilhelm,et al.  Electrical resistivity of YbInAu2 and YbCuAl up to 8 GPa , 1998 .

[18]  H. Buttner,et al.  Simultaneous changes of the 4f-conduction band hybridization and the density of states in the CeNi1-xCux compounds , 1998 .

[19]  D. Paccard,et al.  Magnetic interactions competing in CeNi1-xCux compounds☆ , 1997 .

[20]  P. Canfield,et al.  Magnetic susceptibility and magnetization measurements of an YbAl3 single crystal for groundstate investigations , 1995 .

[21]  C. Geibel,et al.  YbNiAl: A new Yb-based heavy-fermion antiferromagnet , 1995 .

[22]  M. Springford The Kondo problem to heavy fermions , 1993 .

[23]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[24]  N. Brandt,et al.  Concentrated Kondo systems , 1985 .

[25]  D. Wohlleben,et al.  Thermal expansion and specific heat of intermediate valent YbCuAl , 1981 .

[26]  F. D. Boer,et al.  Thermal expansion and magneto-volume effects in the mixed-valent compound YbCuAl , 1980 .

[27]  P. Châtel,et al.  Intermediate-valence state of Yb in Y- and Gd-substituted YbCuAl , 1979 .

[28]  S. Doniach The Kondo lattice and weak antiferromagnetism , 1977 .

[29]  B. Cornut,et al.  Influence of the Crystalline Field on the Kondo Effect of Alloys and Compounds with Cerium Impurities , 1972 .

[30]  W. Wallace,et al.  Rare-earth ions in a hexaognal field I , 1970 .