Spectral analysis of graphs by cyclic automorphism subgroups

The theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis.

[1]  W. Ledermann Introduction to Group Characters , 1977 .

[2]  D. R. Lick,et al.  Theory and Applications of Graphs , 1978 .

[3]  Förster Molecular Orbitals in Chemistry Physics and Biology , 1965 .

[4]  A. J. Coleman The Symmetric Group Made Easy , 1968 .

[5]  W. Scott,et al.  Group Theory. , 1964 .

[6]  Andrew Streitwieser,et al.  Supplemental tables of molecular orbital calculations , 1965 .

[7]  Allen J. Schwenk,et al.  Exactly thirteen connected cubic graphs have integral spectra , 1978 .

[8]  O. Polansky Über ungesättigte Monocyclen mit durchlaufender Konjugation, 2. Mitt.: Berechnung der Elektronenstruktur mit Hilfe der einfachen LCAO-MO-Methode und allgemeine gruppentheoretische Betrachtungen , 1960 .

[9]  B. Elspas,et al.  Graphs with circulant adjacency matrices , 1970 .

[10]  F. Cotton Chemical Applications of Group Theory , 1971 .

[11]  W. T. Tutte Connectivity in graphs , 1966 .

[12]  A. Mowshowitz The characteristic polynomial of a graph , 1972 .

[13]  Energy levels of certain macromolecules with systems of conjugate double and triple bonds , 1967 .

[14]  Andrew Streitwieser,et al.  Molecular orbital theory for organic chemists , 1961 .

[15]  A. Schwenk COMPUTING THE CHARACTERISTIC POLYNOMIAL OF A GRAPH. , 1974 .

[16]  Milan Randic,et al.  Symmetry properties of graphs of interest in chemistry. II. Desargues–Levi graph , 1979 .

[17]  François Diederich,et al.  Benzenoid versus Annulenoid Aromaticity: Synthesis and Properties of Kekulene , 1978 .

[18]  L. Collatz,et al.  Spektren endlicher grafen , 1957 .

[19]  E. Heilbronner Molecular Orbitals in homologen Reihen mehrkerniger aromatischer Kohlenwasserstoffe: I. Die Eigenwerte yon LCAO‐MO's in homologen Reihen , 1954 .

[20]  Frank Harary,et al.  Graph Theory , 2016 .