Spectral analysis of graphs by cyclic automorphism subgroups
暂无分享,去创建一个
[1] W. Ledermann. Introduction to Group Characters , 1977 .
[2] D. R. Lick,et al. Theory and Applications of Graphs , 1978 .
[3] Förster. Molecular Orbitals in Chemistry Physics and Biology , 1965 .
[4] A. J. Coleman. The Symmetric Group Made Easy , 1968 .
[5] W. Scott,et al. Group Theory. , 1964 .
[6] Andrew Streitwieser,et al. Supplemental tables of molecular orbital calculations , 1965 .
[7] Allen J. Schwenk,et al. Exactly thirteen connected cubic graphs have integral spectra , 1978 .
[8] O. Polansky. Über ungesättigte Monocyclen mit durchlaufender Konjugation, 2. Mitt.: Berechnung der Elektronenstruktur mit Hilfe der einfachen LCAO-MO-Methode und allgemeine gruppentheoretische Betrachtungen , 1960 .
[9] B. Elspas,et al. Graphs with circulant adjacency matrices , 1970 .
[10] F. Cotton. Chemical Applications of Group Theory , 1971 .
[11] W. T. Tutte. Connectivity in graphs , 1966 .
[12] A. Mowshowitz. The characteristic polynomial of a graph , 1972 .
[13] Energy levels of certain macromolecules with systems of conjugate double and triple bonds , 1967 .
[14] Andrew Streitwieser,et al. Molecular orbital theory for organic chemists , 1961 .
[15] A. Schwenk. COMPUTING THE CHARACTERISTIC POLYNOMIAL OF A GRAPH. , 1974 .
[16] Milan Randic,et al. Symmetry properties of graphs of interest in chemistry. II. Desargues–Levi graph , 1979 .
[17] François Diederich,et al. Benzenoid versus Annulenoid Aromaticity: Synthesis and Properties of Kekulene , 1978 .
[18] L. Collatz,et al. Spektren endlicher grafen , 1957 .
[19] E. Heilbronner. Molecular Orbitals in homologen Reihen mehrkerniger aromatischer Kohlenwasserstoffe: I. Die Eigenwerte yon LCAO‐MO's in homologen Reihen , 1954 .
[20] Frank Harary,et al. Graph Theory , 2016 .