Adaptive atomistic‐to‐continuum modeling of propagating defects

SUMMARY An adaptive atomistic-to-continuum method is presented for modeling the propagation of material defects. This method extends the bridging domain method to allow the atomic domain to dynamically conform to the evolving defect regions during a simulation, without introducing spurious oscillations and without requiring mesh refinement. The atomic domain expands as defects approach the bridging domain method coupling domain by fine graining nearby finite elements into equivalent atomistic subdomains. Additional algorithms coarse grain portions of the atomic domain to the continuum scale, reducing the degrees of freedom, when the atomic displacements in a subdomain can be approximated by FEM or extended FEM elements to within a certain homogeneity tolerance. The extended FEM approximations are created by fitting the broken inter-atomic bonds of fractured surfaces and dislocation slip planes. Because atomic degrees of freedom are maintained only where needed for each timestep, the solution retains the advantages of multiscale modeling, with a reduced computational cost compared with other multiscale methods. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Jacob Fish,et al.  Discrete-to-continuum bridging based on multigrid principles , 2004 .

[2]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[3]  Udo Nackenhorst,et al.  Applying Cauchy-Born rule for converting atomistic model to continuum model , 2010 .

[4]  Ted Belytschko,et al.  An adaptive concurrent multiscale method for the dynamic simulation of dislocations , 2011 .

[5]  William A. Curtin,et al.  A coupled atomistic/continuum model of defects in solids , 2002 .

[6]  Mark A. Duchaineau,et al.  Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure , 2004 .

[7]  Ted Belytschko,et al.  A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids , 2007 .

[8]  Ted Belytschko,et al.  Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .

[9]  Rui Huang,et al.  Internal lattice relaxation of single-layer graphene under in-plane deformation , 2008 .

[10]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[11]  Weixuan Yang,et al.  A temperature‐related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations , 2007 .

[12]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[13]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[14]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[15]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[16]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[17]  Ted Belytschko,et al.  A continuum‐to‐atomistic bridging domain method for composite lattices , 2010 .

[18]  Hiroshi Kadowaki,et al.  Bridging multi-scale method for localization problems , 2004 .

[19]  Ted Belytschko,et al.  Fast integration and weight function blending in the extended finite element method , 2009 .

[20]  J. Tinsley Oden,et al.  On the application of the Arlequin method to the coupling of particle and continuum models , 2008 .

[21]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[22]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[23]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[24]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[25]  Nicolas Moës,et al.  Mass lumping strategies for X‐FEM explicit dynamics: Application to crack propagation , 2008 .

[26]  Udo Nackenhorst,et al.  An adaptive FE–MD model coupling approach , 2010 .

[27]  Hubert Maigre,et al.  An explicit dynamics extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions , 2009 .

[28]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[29]  Weixuan Yang,et al.  Extension of the temperature-related Cauchy–Born rule: Material stability analysis and thermo-mechanical coupling , 2008 .

[30]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[31]  Ted Belytschko,et al.  Conservation properties of the bridging domain method for coupled molecular/continuum dynamics , 2008 .

[32]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[33]  Julien Réthoré,et al.  A coupled molecular dynamics and extended finite element method for dynamic crack propagation , 2010 .

[34]  Robert E. Rudd,et al.  Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature , 2005 .

[35]  Harold S. Park,et al.  A surface Cauchy–Born model for nanoscale materials , 2006 .

[36]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[37]  Harold S. Park,et al.  A Surface Cauchy-Born model for silicon nanostructures , 2008 .

[38]  Harold S. Park,et al.  Surface Cauchy-Born analysis of surface stress effects on metallic nanowires , 2007 .

[39]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[40]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[41]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[42]  Wei Chen,et al.  Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum , 2010 .

[43]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[44]  Weixuan Yang,et al.  Temperature-related Cauchy–Born rule for multiscale modeling of crystalline solids , 2006 .

[45]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .