Non-equilibrium Structural Evolution of the Lithium-Rich Li1+yMn2O4 Cathode within a Battery

Lithium-ion batteries are undergoing rapid development to meet the energy demands of the transportation and renewable energy-generation sectors. The capacity of a lithium-ion battery is dependent on the amount of lithium that can be reversibly incorporated into the cathode. This work directly quantifies the time- and current-dependent lithium transfer within a cathode functioning under conventional charge–discharge cycling. We examine Li1+yMn2O4 under real working conditions using in situ neutron powder diffraction and link the atomic-scale structure to the battery performance. The lithium location and content, oxygen positional parameter, and lattice parameter of the cathode are measured and linked to the battery’s charge/discharge characteristics. Lithium insertion (discharge) differs from extraction (charge), a feature that may explain the relative ease of discharge (compared with charge) of this material. An atomic-scale understanding of cathode functionality, such as revealed here, will direct improv...

[1]  K. Kawamura,et al.  Structural disorder along the lithium diffusion pathway in cubically stabilized lithium manganese spinel II. Molecular dynamics calculation , 2003 .

[2]  Neeraj Sharma,et al.  In-situ neutron diffraction study of the MoS2 anode using a custom-built Li-ion battery , 2011 .

[3]  M. Elcombe,et al.  A powder neutron diffraction study of λ and γ manganese dioxide and of LiMn2O4 , 1994 .

[4]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[5]  D. Richard,et al.  Analysis and Visualisation of Neutron-Scattering Data , 1996 .

[6]  K. Nikolowski,et al.  Design and performance of an electrochemical in-situ cell for high resolution full-pattern X-ray powder diffraction , 2005 .

[7]  Dominique Guyomard,et al.  Self-discharge of LiMn2O4/C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements , 1998 .

[8]  Neeraj Sharma,et al.  Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction , 2013 .

[9]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[10]  M. Hagen,et al.  WOMBAT: The High Intensity Powder Diffractometer at the OPAL Reactor , 2006 .

[11]  N. Sharma,et al.  Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4. , 2012, Journal of the American Chemical Society.

[12]  H. M. Otte,et al.  X‐Ray Diffractometer Determination of the Thermal Expansion Coefficient of Aluminum near Room Temperature , 1963 .

[13]  N. Ishizawa,et al.  The effect of mixed Mn valences on Li migration in LiMn2O4 spinel: A molecular dynamics study , 2004 .

[14]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[15]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[16]  Josh Thomas,et al.  A neutron diffraction study of Ni substituted LiMn2O4 , 1998 .

[17]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[18]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[19]  E. Kelder,et al.  Neutron diffraction study of stoichiometric spinel Li1+xMn2–xO4 showing octahedral 16c-site Li-occupation , 1999 .

[20]  Yang Yong,et al.  Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature , 2009 .

[21]  M. Wakihara Recent developments in lithium ion batteries , 2001 .

[22]  R. Frech,et al.  In situ Raman spectroscopic studies of electrochemical intercalation in LixMn2O4-based cathodes , 1999 .

[23]  K. A. Hofmann,et al.  Der Glanzkohlenstoff als Anfang der schwarzen krystallinen Kohlenstoffreihe , 1926 .

[24]  Nathalie Ravet,et al.  On the electronic conductivity of phospho-olivines as lithium storage electrodes , 2003, Nature materials.

[25]  C. Ling,et al.  Capture Lithium in αMnO2: Insights from First Principles , 2012 .

[26]  A. D. Kock,et al.  Spinel electrodes for lithium batteries. A review , 1987 .

[27]  Neeraj Sharma,et al.  Time-Dependent in-Situ Neutron Diffraction Investigation of a Li(Co0.16Mn1.84)O4 Cathode , 2011 .

[28]  H. Berg,et al.  The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction , 2001 .

[29]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[30]  Neeraj Sharma,et al.  Structural changes in a commercial lithium-ion battery during electrochemical cycling: An in situ neutron diffraction study , 2010 .

[31]  Neeraj Sharma,et al.  Br‐Doped Li4Ti5O12 and Composite TiO2 Anodes for Li‐ion Batteries: Synchrotron X‐Ray and in situ Neutron Diffraction Studies , 2011 .

[32]  A. D. Kock,et al.  Spinel Electrodes from the Li‐Mn‐O System for Rechargeable Lithium Battery Applications , 1992 .

[33]  S. Mukerjee,et al.  Structural evolution of Li{sub x}Mn{sub 2}O{sub 4} in lithium-ion battery cells measured in situ using synchrotron X-ray diffraction techniques , 1998 .

[34]  Neeraj Sharma,et al.  In situ neutron powder diffraction studies of lithium-ion batteries , 2012, Journal of Solid State Electrochemistry.

[35]  Josh Thomas,et al.  Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel , 1999 .